动态交联丁苯橡胶的制备与性能

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE Journal of Polymer Engineering Pub Date : 2023-09-04 DOI:10.1515/polyeng-2023-0036
Hui Lu, Pingyin Wang, Yaozhu Tian, Zhu Luo
{"title":"动态交联丁苯橡胶的制备与性能","authors":"Hui Lu, Pingyin Wang, Yaozhu Tian, Zhu Luo","doi":"10.1515/polyeng-2023-0036","DOIUrl":null,"url":null,"abstract":"Abstract As the second largest synthetic rubber after styrene butadiene rubber, cis-butadiene rubber (BR) is one of the important raw materials for automobile tires and cold-resistant products. Herein, a traditional rubber preparation process was used to introduce dynamic reversible bonds into BR based on an “imitative” click reaction. Compared with traditional complex self-healing techniques, this method is undoubtedly simpler and more efficient. Dynamic reversible bonds are able to break and recombine under the stimulation of external conditions, which endow rubber with self-healing properties. We use the small biological molecule lipoic acid (LA) as a cross-linking agent and cross-link LA and BR through mechanical compounding and hot press vulcanization to obtain self-healing butadiene rubber (BLA). In addition, BLA-(Zn2+) was further prepared by introducing Zn2+ to form metal-oxygen coordination bonds with carboxyl groups. And systematically studied the effect of Zn2+ on the mechanical properties and self-healing properties of cross-linked BR. Through the combined action of disulfide bonds, hydrogen bonds and Zn2+-O coordination bonds, BLA-(Zn2+) has better properties than BLA, the tensile strength can reach 3.76 MPa, and the repair efficiency is about 82 %. This simple preparation process is certainly more cost effective.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and properties of dynamic crosslinked styrene butadiene rubber\",\"authors\":\"Hui Lu, Pingyin Wang, Yaozhu Tian, Zhu Luo\",\"doi\":\"10.1515/polyeng-2023-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As the second largest synthetic rubber after styrene butadiene rubber, cis-butadiene rubber (BR) is one of the important raw materials for automobile tires and cold-resistant products. Herein, a traditional rubber preparation process was used to introduce dynamic reversible bonds into BR based on an “imitative” click reaction. Compared with traditional complex self-healing techniques, this method is undoubtedly simpler and more efficient. Dynamic reversible bonds are able to break and recombine under the stimulation of external conditions, which endow rubber with self-healing properties. We use the small biological molecule lipoic acid (LA) as a cross-linking agent and cross-link LA and BR through mechanical compounding and hot press vulcanization to obtain self-healing butadiene rubber (BLA). In addition, BLA-(Zn2+) was further prepared by introducing Zn2+ to form metal-oxygen coordination bonds with carboxyl groups. And systematically studied the effect of Zn2+ on the mechanical properties and self-healing properties of cross-linked BR. Through the combined action of disulfide bonds, hydrogen bonds and Zn2+-O coordination bonds, BLA-(Zn2+) has better properties than BLA, the tensile strength can reach 3.76 MPa, and the repair efficiency is about 82 %. This simple preparation process is certainly more cost effective.\",\"PeriodicalId\":16881,\"journal\":{\"name\":\"Journal of Polymer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/polyeng-2023-0036\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2023-0036","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要顺丁橡胶是仅次于丁苯橡胶的第二大合成橡胶,是汽车轮胎和抗寒产品的重要原料之一。本文采用传统的橡胶制备工艺,在“模拟”点击反应的基础上,将动态可逆键引入BR中。与传统的复杂自修复技术相比,这种方法无疑更简单、更高效。动态可逆键能够在外部条件的刺激下断裂和重组,赋予橡胶自修复性能。我们使用小生物分子硫辛酸(LA)作为交联剂,通过机械复合和热压硫化将LA和BR交联,获得自修复丁二烯橡胶(BLA)。此外,通过引入Zn2+与羧基形成金属-氧配位键,进一步制备了BLA-(Zn2+)。系统研究了Zn2+对交联BR力学性能和自修复性能的影响。通过二硫键、氢键和Zn2+-O配位键的共同作用,BLA-(Zn2+)具有比BLA更好的性能,拉伸强度可达3.76 MPa,修复效率约为82 %. 这种简单的制备过程当然更具成本效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and properties of dynamic crosslinked styrene butadiene rubber
Abstract As the second largest synthetic rubber after styrene butadiene rubber, cis-butadiene rubber (BR) is one of the important raw materials for automobile tires and cold-resistant products. Herein, a traditional rubber preparation process was used to introduce dynamic reversible bonds into BR based on an “imitative” click reaction. Compared with traditional complex self-healing techniques, this method is undoubtedly simpler and more efficient. Dynamic reversible bonds are able to break and recombine under the stimulation of external conditions, which endow rubber with self-healing properties. We use the small biological molecule lipoic acid (LA) as a cross-linking agent and cross-link LA and BR through mechanical compounding and hot press vulcanization to obtain self-healing butadiene rubber (BLA). In addition, BLA-(Zn2+) was further prepared by introducing Zn2+ to form metal-oxygen coordination bonds with carboxyl groups. And systematically studied the effect of Zn2+ on the mechanical properties and self-healing properties of cross-linked BR. Through the combined action of disulfide bonds, hydrogen bonds and Zn2+-O coordination bonds, BLA-(Zn2+) has better properties than BLA, the tensile strength can reach 3.76 MPa, and the repair efficiency is about 82 %. This simple preparation process is certainly more cost effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymer Engineering
Journal of Polymer Engineering 工程技术-高分子科学
CiteScore
3.20
自引率
5.00%
发文量
95
审稿时长
2.5 months
期刊介绍: Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.
期刊最新文献
Synthesis, rheology, cytotoxicity and antibacterial studies of N-acrolylglycine-acrylamide copolymer soft nano hydrogel An experimental investigation on the influence of pore foaming agent particle size on cell morphology, hydrophobicity, and acoustic performance of open cell poly (vinylidene fluoride) polymeric foams Low thickness electromagnetic wave absorbing polyurethane and IIR composites by interfacial polarization of multi-layer structure Synthesis and properties of reed-based polyurethane (PU) coating Influence of plasticisation during foam injection moulding on the melt viscosity and fibre length of long glass fibre-reinforced polypropylene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1