M. Guida, B. Rebbah, N. Anter, A. Medaghri-Alaoui, E. Rakib, A. Hannioui
{"title":"利用热化学转化技术从农业生物质废物中生产生物燃料和生物炭:热重分析和热解研究","authors":"M. Guida, B. Rebbah, N. Anter, A. Medaghri-Alaoui, E. Rakib, A. Hannioui","doi":"10.1556/446.2021.00020","DOIUrl":null,"url":null,"abstract":"In this paper, thermal degradation (TGA) and pyrolysis studies of sunflower shell biomass (SSB), eucalyptus biomass (EB), wheat straw biomass (WSB), and peanut shell biomass (PSB) were carried out using the thermogravimetric analysis and stainless steel tubular reactor. Thermal degradation of all biomass wastes was examined at a heating rate of 10 °C/min in nitrogen atmosphere between 20 and 800 °C. Experiments of pyrolysis were carried out in a tubular reactor from 300 to 700 °C with a heating rate of 10 °C/min, a particle size of 0.1–0.3 mm and nitrogen flow rate of 100 mL.min−1, which the aim to study how temperature affects liquid, solid, and gas products. The results of this work showed that three stages have been identified in the thermal decomposition of SSB, EB, WSB, and PSB wastes. The first stage occurred at 120–158 °C, the second stage, which corresponds to hemicellulose and cellulose's degradation, occurred in temperatures range from 139 to 480 °C for hemicellulose, and from 233 to 412 °C for cellulose, while the third stage occurred at 534–720 °C. It was concluded that temperature has a significant effect on product yields. The maximum of bio-oil yields of 37.55, 30.5, 46.96, and 50.05 wt% for WSB, PSB, SSB, and EB, were obtained at pyrolysis temperature of 500 °C (SSB, PSB, and WSB) and 550 °C (EB). Raw biomass, solid and liquid products obtained were characterized by elemental analysis, Fourier transformed infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), and x-ray diffraction (XRD). The analysis of solid and liquid products showed that bio-oils and bio-chars from agricultural biomass wastes could be prospective sources of renewable fuels production and value added chemical products.","PeriodicalId":20837,"journal":{"name":"Progress in Agricultural Engineering Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Biofuels and biochars production from agricultural biomass wastes by thermochemical conversion technologies: Thermogravimetric analysis and pyrolysis studies\",\"authors\":\"M. Guida, B. Rebbah, N. Anter, A. Medaghri-Alaoui, E. Rakib, A. Hannioui\",\"doi\":\"10.1556/446.2021.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, thermal degradation (TGA) and pyrolysis studies of sunflower shell biomass (SSB), eucalyptus biomass (EB), wheat straw biomass (WSB), and peanut shell biomass (PSB) were carried out using the thermogravimetric analysis and stainless steel tubular reactor. Thermal degradation of all biomass wastes was examined at a heating rate of 10 °C/min in nitrogen atmosphere between 20 and 800 °C. Experiments of pyrolysis were carried out in a tubular reactor from 300 to 700 °C with a heating rate of 10 °C/min, a particle size of 0.1–0.3 mm and nitrogen flow rate of 100 mL.min−1, which the aim to study how temperature affects liquid, solid, and gas products. The results of this work showed that three stages have been identified in the thermal decomposition of SSB, EB, WSB, and PSB wastes. The first stage occurred at 120–158 °C, the second stage, which corresponds to hemicellulose and cellulose's degradation, occurred in temperatures range from 139 to 480 °C for hemicellulose, and from 233 to 412 °C for cellulose, while the third stage occurred at 534–720 °C. It was concluded that temperature has a significant effect on product yields. The maximum of bio-oil yields of 37.55, 30.5, 46.96, and 50.05 wt% for WSB, PSB, SSB, and EB, were obtained at pyrolysis temperature of 500 °C (SSB, PSB, and WSB) and 550 °C (EB). Raw biomass, solid and liquid products obtained were characterized by elemental analysis, Fourier transformed infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), and x-ray diffraction (XRD). The analysis of solid and liquid products showed that bio-oils and bio-chars from agricultural biomass wastes could be prospective sources of renewable fuels production and value added chemical products.\",\"PeriodicalId\":20837,\"journal\":{\"name\":\"Progress in Agricultural Engineering Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Agricultural Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/446.2021.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Agricultural Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/446.2021.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Biofuels and biochars production from agricultural biomass wastes by thermochemical conversion technologies: Thermogravimetric analysis and pyrolysis studies
In this paper, thermal degradation (TGA) and pyrolysis studies of sunflower shell biomass (SSB), eucalyptus biomass (EB), wheat straw biomass (WSB), and peanut shell biomass (PSB) were carried out using the thermogravimetric analysis and stainless steel tubular reactor. Thermal degradation of all biomass wastes was examined at a heating rate of 10 °C/min in nitrogen atmosphere between 20 and 800 °C. Experiments of pyrolysis were carried out in a tubular reactor from 300 to 700 °C with a heating rate of 10 °C/min, a particle size of 0.1–0.3 mm and nitrogen flow rate of 100 mL.min−1, which the aim to study how temperature affects liquid, solid, and gas products. The results of this work showed that three stages have been identified in the thermal decomposition of SSB, EB, WSB, and PSB wastes. The first stage occurred at 120–158 °C, the second stage, which corresponds to hemicellulose and cellulose's degradation, occurred in temperatures range from 139 to 480 °C for hemicellulose, and from 233 to 412 °C for cellulose, while the third stage occurred at 534–720 °C. It was concluded that temperature has a significant effect on product yields. The maximum of bio-oil yields of 37.55, 30.5, 46.96, and 50.05 wt% for WSB, PSB, SSB, and EB, were obtained at pyrolysis temperature of 500 °C (SSB, PSB, and WSB) and 550 °C (EB). Raw biomass, solid and liquid products obtained were characterized by elemental analysis, Fourier transformed infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), and x-ray diffraction (XRD). The analysis of solid and liquid products showed that bio-oils and bio-chars from agricultural biomass wastes could be prospective sources of renewable fuels production and value added chemical products.
期刊介绍:
The Journal publishes original papers, review papers and preliminary communications in the field of agricultural, environmental and process engineering. The main purpose is to show new scientific results, new developments and procedures with special respect to the engineering of crop production and animal husbandry, soil and water management, precision agriculture, information technology in agriculture, advancements in instrumentation and automation, technical and safety aspects of environmental and food engineering.