中国蚯蚓适宜栖息地的测绘

IF 9.8 1区 农林科学 Q1 SOIL SCIENCE Soil Biology & Biochemistry Pub Date : 2023-09-01 DOI:10.1016/j.soilbio.2023.109081
Xiaoliang Li , Kening Wu , Shiheng Hao , Long Kang , Jinliang Ma , Ran Zhao , Yue Zhang
{"title":"中国蚯蚓适宜栖息地的测绘","authors":"Xiaoliang Li ,&nbsp;Kening Wu ,&nbsp;Shiheng Hao ,&nbsp;Long Kang ,&nbsp;Jinliang Ma ,&nbsp;Ran Zhao ,&nbsp;Yue Zhang","doi":"10.1016/j.soilbio.2023.109081","DOIUrl":null,"url":null,"abstract":"<div><p>Earthworms are important soil organisms that play critical roles in ecosystem material cycling and energy flows. Discovering and predicting the distribution of earthworm habitats is critical for managing biodiversity conservation projects and improving ecosystem health. However, earthworm data are challenging to obtain, and studies on the distribution of earthworms and factors affecting this have mainly been conducted in fields at a small scale; the spatial distribution of earthworms throughout China remains unclear. Species distribution models have been effectively used in macro-scale species suitability distribution studies; however, they have certain limitations. Thus, here, we optimized the maximum entropy model (MaxEnt) to achieve low complexity and high transferability, and the model was capable of predicting the potential distribution of earthworms in China. Modeling was based on the use of a developed database containing 286 earthworm occurrence records and 31 environmental variables (19 climatic, 9 soil, and 3 topographic variables). Results show that earthworm distribution is mainly controlled by the following environmental variables (with corresponding contribution rates): minimum temperature of the coldest month (18.47%), digital elevation model (17.65%), coarse fragments (16.72%), soil organic carbon (9.65%), soil type (7.53%), mean diurnal range (5.35%), and soil thickness (5.05%). The variables with the strongest influence on distribution are climate followed by landforms and soils. The relationship between the effect of environmental variables and earthworm distribution is not simple and linear, and each element has a certain threshold range. Only 50.67% of the total land area of China provides a suitable habitat for earthworms, and there are remarkable spatial differences. Of the various ecosystems, woodland ecosystems provide most of the suitable habitats, followed by cropland and grassland ecosystems, which together account for 45.74% of the land area. This study can be used as a reference for understanding and assessing ecosystem health, sustainability, and for enabling biodiversity conservation.</p></div>","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"184 ","pages":"Article 109081"},"PeriodicalIF":9.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mapping of suitable habitats for earthworms in China\",\"authors\":\"Xiaoliang Li ,&nbsp;Kening Wu ,&nbsp;Shiheng Hao ,&nbsp;Long Kang ,&nbsp;Jinliang Ma ,&nbsp;Ran Zhao ,&nbsp;Yue Zhang\",\"doi\":\"10.1016/j.soilbio.2023.109081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Earthworms are important soil organisms that play critical roles in ecosystem material cycling and energy flows. Discovering and predicting the distribution of earthworm habitats is critical for managing biodiversity conservation projects and improving ecosystem health. However, earthworm data are challenging to obtain, and studies on the distribution of earthworms and factors affecting this have mainly been conducted in fields at a small scale; the spatial distribution of earthworms throughout China remains unclear. Species distribution models have been effectively used in macro-scale species suitability distribution studies; however, they have certain limitations. Thus, here, we optimized the maximum entropy model (MaxEnt) to achieve low complexity and high transferability, and the model was capable of predicting the potential distribution of earthworms in China. Modeling was based on the use of a developed database containing 286 earthworm occurrence records and 31 environmental variables (19 climatic, 9 soil, and 3 topographic variables). Results show that earthworm distribution is mainly controlled by the following environmental variables (with corresponding contribution rates): minimum temperature of the coldest month (18.47%), digital elevation model (17.65%), coarse fragments (16.72%), soil organic carbon (9.65%), soil type (7.53%), mean diurnal range (5.35%), and soil thickness (5.05%). The variables with the strongest influence on distribution are climate followed by landforms and soils. The relationship between the effect of environmental variables and earthworm distribution is not simple and linear, and each element has a certain threshold range. Only 50.67% of the total land area of China provides a suitable habitat for earthworms, and there are remarkable spatial differences. Of the various ecosystems, woodland ecosystems provide most of the suitable habitats, followed by cropland and grassland ecosystems, which together account for 45.74% of the land area. This study can be used as a reference for understanding and assessing ecosystem health, sustainability, and for enabling biodiversity conservation.</p></div>\",\"PeriodicalId\":21888,\"journal\":{\"name\":\"Soil Biology & Biochemistry\",\"volume\":\"184 \",\"pages\":\"Article 109081\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Biology & Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038071723001438\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038071723001438","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

蚯蚓是重要的土壤生物,在生态系统物质循环和能量流动中起着至关重要的作用。发现和预测蚯蚓栖息地的分布对管理生物多样性保护项目和改善生态系统健康至关重要。然而,蚯蚓的数据很难获得,对蚯蚓分布及其影响因素的研究主要是在小范围的野外进行的;蚯蚓在中国的空间分布尚不清楚。物种分布模型已有效地应用于宏观尺度的物种适宜性分布研究;然而,它们也有一定的局限性。因此,我们对最大熵模型(MaxEnt)进行了优化,以达到低复杂度和高可转移性,该模型能够预测中国蚯蚓的潜在分布。建模基于一个已开发的数据库,该数据库包含286条蚯蚓发生记录和31个环境变量(19个气候变量,9个土壤变量和3个地形变量)。结果表明:控制蚯蚓分布的环境变量主要有:最冷月最低气温(18.47%)、数字高程模型(17.65%)、粗碎片(16.72%)、土壤有机碳(9.65%)、土壤类型(7.53%)、平均日差(5.35%)和土壤厚度(5.05%)。对分布影响最大的变量是气候,其次是地貌和土壤。环境变量与蚯蚓分布的影响关系不是简单的线性关系,每个要素都有一定的阈值范围。适宜蚯蚓生境的土地面积仅占全国土地总面积的50.67%,且空间差异显著。在各生态系统中,林地生态系统提供了最多的适宜生境,其次是耕地和草地生态系统,共占土地面积的45.74%。该研究可为理解和评估生态系统的健康、可持续性以及实现生物多样性保护提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mapping of suitable habitats for earthworms in China

Earthworms are important soil organisms that play critical roles in ecosystem material cycling and energy flows. Discovering and predicting the distribution of earthworm habitats is critical for managing biodiversity conservation projects and improving ecosystem health. However, earthworm data are challenging to obtain, and studies on the distribution of earthworms and factors affecting this have mainly been conducted in fields at a small scale; the spatial distribution of earthworms throughout China remains unclear. Species distribution models have been effectively used in macro-scale species suitability distribution studies; however, they have certain limitations. Thus, here, we optimized the maximum entropy model (MaxEnt) to achieve low complexity and high transferability, and the model was capable of predicting the potential distribution of earthworms in China. Modeling was based on the use of a developed database containing 286 earthworm occurrence records and 31 environmental variables (19 climatic, 9 soil, and 3 topographic variables). Results show that earthworm distribution is mainly controlled by the following environmental variables (with corresponding contribution rates): minimum temperature of the coldest month (18.47%), digital elevation model (17.65%), coarse fragments (16.72%), soil organic carbon (9.65%), soil type (7.53%), mean diurnal range (5.35%), and soil thickness (5.05%). The variables with the strongest influence on distribution are climate followed by landforms and soils. The relationship between the effect of environmental variables and earthworm distribution is not simple and linear, and each element has a certain threshold range. Only 50.67% of the total land area of China provides a suitable habitat for earthworms, and there are remarkable spatial differences. Of the various ecosystems, woodland ecosystems provide most of the suitable habitats, followed by cropland and grassland ecosystems, which together account for 45.74% of the land area. This study can be used as a reference for understanding and assessing ecosystem health, sustainability, and for enabling biodiversity conservation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Biology & Biochemistry
Soil Biology & Biochemistry 农林科学-土壤科学
CiteScore
16.90
自引率
9.30%
发文量
312
审稿时长
49 days
期刊介绍: Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.
期刊最新文献
Hyphosphere core taxa link plant-arbuscular mycorrhizal fungi combinations to soil organic phosphorus mineralization Contributions of microbial necromass and plant lignin to soil organic carbon stock in a paddy field under simulated conditions of long-term elevated CO2 and warming Tree species-dependent effects of urbanization and plant invasion on deadwood biota and decomposition rates Virome responses to heating of a forest soil suggest that most dsDNA viral particles do not persist at 90°C Simulated erosion of A horizon influences the dissolved organic matter chemodiversity and carbon sequestration of B horizon in Mollisols
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1