可拓学增强了人工智能应用的公理设计过程

IF 1.7 3区 工程技术 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing Pub Date : 2022-08-03 DOI:10.1017/S0890060422000075
Wenjuan Li, C. Suh, Xiangyang Xu, Zhenghe Song
{"title":"可拓学增强了人工智能应用的公理设计过程","authors":"Wenjuan Li, C. Suh, Xiangyang Xu, Zhenghe Song","doi":"10.1017/S0890060422000075","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces a method to improve the design procedure of axiomatic design theory (AD) with Extenics. A comprehensive review of the AD indicates that the powerful principle of AD has been widely studied and applied to many areas, however, inexperienced practitioners of the AD theory still find it difficult to follow or apply the principles in their design which inadvertently often leads to misunderstanding and skepticism. The lack of definitive descriptions for all the elements and specific approaches to guiding the mapping process restricts the development and application of AD theory. This paper improves the design procedure of AD with Extenics. The elements in AD domain are expressed by basic-elements of Extenics, and the formulations are generated. The mapping process based on AD and Extenics is developed. The improved design procedure provides designers with a theoretical foundation based on the logical and rational thought process, meanwhile the solution space can be expanded and innovative designs are inspired. Based on the proposed design procedure, a computer-aided system is developed, which makes the complex and fuzzy design activity clear and easy to follow by filling in the blanks in a step-by-step manner. An example of a novel corn harvester header design scheme is considered to illustrate the validity of the improved design procedure.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extenics enhanced axiomatic design procedure for AI applications\",\"authors\":\"Wenjuan Li, C. Suh, Xiangyang Xu, Zhenghe Song\",\"doi\":\"10.1017/S0890060422000075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper introduces a method to improve the design procedure of axiomatic design theory (AD) with Extenics. A comprehensive review of the AD indicates that the powerful principle of AD has been widely studied and applied to many areas, however, inexperienced practitioners of the AD theory still find it difficult to follow or apply the principles in their design which inadvertently often leads to misunderstanding and skepticism. The lack of definitive descriptions for all the elements and specific approaches to guiding the mapping process restricts the development and application of AD theory. This paper improves the design procedure of AD with Extenics. The elements in AD domain are expressed by basic-elements of Extenics, and the formulations are generated. The mapping process based on AD and Extenics is developed. The improved design procedure provides designers with a theoretical foundation based on the logical and rational thought process, meanwhile the solution space can be expanded and innovative designs are inspired. Based on the proposed design procedure, a computer-aided system is developed, which makes the complex and fuzzy design activity clear and easy to follow by filling in the blanks in a step-by-step manner. An example of a novel corn harvester header design scheme is considered to illustrate the validity of the improved design procedure.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060422000075\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060422000075","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文介绍了一种用可拓学改进公理化设计理论(AD)设计过程的方法。对AD理论的全面回顾表明,AD理论的强大原理已被广泛研究并应用于许多领域,然而,缺乏经验的AD理论实践者仍然难以在设计中遵循或应用这些原理,这往往会无意中导致误解和怀疑。缺乏对所有要素的明确描述和指导制图过程的具体方法限制了AD理论的发展和应用。本文利用可拓学对AD的设计过程进行了改进。用可拓学的基本元素来表示AD域的元素,并生成相应的表达式。开发了基于AD和Extenics的映射过程。改进后的设计流程为设计师提供了基于逻辑理性思维过程的理论基础,同时拓展了解决方案的空间,激发了创新设计的灵感。根据所提出的设计流程,开发了计算机辅助系统,通过分步填空,使复杂模糊的设计活动变得清晰易懂。以一种新型玉米收割机收割机头设计方案为例,说明了改进设计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extenics enhanced axiomatic design procedure for AI applications
Abstract This paper introduces a method to improve the design procedure of axiomatic design theory (AD) with Extenics. A comprehensive review of the AD indicates that the powerful principle of AD has been widely studied and applied to many areas, however, inexperienced practitioners of the AD theory still find it difficult to follow or apply the principles in their design which inadvertently often leads to misunderstanding and skepticism. The lack of definitive descriptions for all the elements and specific approaches to guiding the mapping process restricts the development and application of AD theory. This paper improves the design procedure of AD with Extenics. The elements in AD domain are expressed by basic-elements of Extenics, and the formulations are generated. The mapping process based on AD and Extenics is developed. The improved design procedure provides designers with a theoretical foundation based on the logical and rational thought process, meanwhile the solution space can be expanded and innovative designs are inspired. Based on the proposed design procedure, a computer-aided system is developed, which makes the complex and fuzzy design activity clear and easy to follow by filling in the blanks in a step-by-step manner. An example of a novel corn harvester header design scheme is considered to illustrate the validity of the improved design procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
14.30%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.
期刊最新文献
Does empathy lead to creativity? A simulation-based investigation on the role of team trait empathy on nominal group concept generation and early concept screening A knowledge-enabled approach for user experience-driven product improvement at the conceptual design stage Free-text inspiration search for systematic bio-inspiration support of engineering design Tool life prediction via SMB-enabled monitor based on BPNN coupling algorithms for sustainable manufacturing A comparative review on the role of stimuli in idea generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1