大吉亚尼市新兴农民采用的灌溉管理策略对番茄品种的影响

Tebogo J Lebea, N. Jovanović, M. Kena, K. Ayisi, Wisani G Mushadu
{"title":"大吉亚尼市新兴农民采用的灌溉管理策略对番茄品种的影响","authors":"Tebogo J Lebea, N. Jovanović, M. Kena, K. Ayisi, Wisani G Mushadu","doi":"10.1080/02571862.2021.1913767","DOIUrl":null,"url":null,"abstract":"Intensification of low-tech agricultural production is required in the Greater Giyani Municipality (Limpopo province, South Africa) to respond to changing climatic conditions, water scarcity and increased food demand of the local market. Two years of field experiments were conducted on two typical small-scale farms under real-world conditions. The objective was to test the response of locally available tomato (Lycopersicon esculentum Mill.) cultivars (Rodade, STAR 9006, Commander, HTX 14 and MFH) to two different irrigation strategies (full irrigation FI and deficit irrigation DI). While results showed high tomato yield variability (ranging between 9.2 t ha−1 and 59.7 t ha−1) depending on the farms, environmental conditions (heatwaves, diseases) and irrigation management, STAR 9006 appeared to be the best performing cultivar and HTX 14 the worst. Seasonal evapotranspiration under FI was between 400 and 620 mm depending on the length of the season and harvesting time. Crop water productivity was generally higher for DI than FI treatments. Deficit irrigation appeared to be feasible to reduce water use for some cultivars (eg cv. STAR 9006), however, an economic analysis should be conducted at specific sites/farms to determine the impacts of DI on farmers’ income as some yield losses can be expected during drought years.","PeriodicalId":21920,"journal":{"name":"South African Journal of Plant and Soil","volume":"38 1","pages":"313 - 325"},"PeriodicalIF":1.1000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of tomato cultivars to irrigation management strategies employed by emerging farmers in the Greater Giyani Municipality\",\"authors\":\"Tebogo J Lebea, N. Jovanović, M. Kena, K. Ayisi, Wisani G Mushadu\",\"doi\":\"10.1080/02571862.2021.1913767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intensification of low-tech agricultural production is required in the Greater Giyani Municipality (Limpopo province, South Africa) to respond to changing climatic conditions, water scarcity and increased food demand of the local market. Two years of field experiments were conducted on two typical small-scale farms under real-world conditions. The objective was to test the response of locally available tomato (Lycopersicon esculentum Mill.) cultivars (Rodade, STAR 9006, Commander, HTX 14 and MFH) to two different irrigation strategies (full irrigation FI and deficit irrigation DI). While results showed high tomato yield variability (ranging between 9.2 t ha−1 and 59.7 t ha−1) depending on the farms, environmental conditions (heatwaves, diseases) and irrigation management, STAR 9006 appeared to be the best performing cultivar and HTX 14 the worst. Seasonal evapotranspiration under FI was between 400 and 620 mm depending on the length of the season and harvesting time. Crop water productivity was generally higher for DI than FI treatments. Deficit irrigation appeared to be feasible to reduce water use for some cultivars (eg cv. STAR 9006), however, an economic analysis should be conducted at specific sites/farms to determine the impacts of DI on farmers’ income as some yield losses can be expected during drought years.\",\"PeriodicalId\":21920,\"journal\":{\"name\":\"South African Journal of Plant and Soil\",\"volume\":\"38 1\",\"pages\":\"313 - 325\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Plant and Soil\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02571862.2021.1913767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Plant and Soil","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02571862.2021.1913767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

大吉亚尼市(南非林波波省)需要加强低技术农业生产,以应对不断变化的气候条件、水资源短缺和当地市场粮食需求增加。在现实条件下,在两个典型的小规模农场进行了为期两年的田间试验。目的是测试当地番茄(Lycopersicon esculentum Mill.)品种(Rodade、STAR 9006、Commander、HTX 14和MFH)对两种不同灌溉策略(完全灌溉FI和亏缺灌溉DI)的反应。结果表明,根据不同的种植方式、环境条件(热浪、病害)和灌溉管理,番茄产量变异较大(在9.2 ~ 59.7 t ha - 1之间),STAR 9006表现最好,htx14表现最差。FI下的季节蒸散量在400 ~ 620 mm之间,取决于季节长度和收获时间。DI处理的作物水分生产力普遍高于FI处理。亏缺灌溉似乎是可行的,以减少一些品种的用水量(如cv。STAR 9006),但是,应在特定地点/农场进行经济分析,以确定DI对农民收入的影响,因为在干旱年份可能会出现一些产量损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Response of tomato cultivars to irrigation management strategies employed by emerging farmers in the Greater Giyani Municipality
Intensification of low-tech agricultural production is required in the Greater Giyani Municipality (Limpopo province, South Africa) to respond to changing climatic conditions, water scarcity and increased food demand of the local market. Two years of field experiments were conducted on two typical small-scale farms under real-world conditions. The objective was to test the response of locally available tomato (Lycopersicon esculentum Mill.) cultivars (Rodade, STAR 9006, Commander, HTX 14 and MFH) to two different irrigation strategies (full irrigation FI and deficit irrigation DI). While results showed high tomato yield variability (ranging between 9.2 t ha−1 and 59.7 t ha−1) depending on the farms, environmental conditions (heatwaves, diseases) and irrigation management, STAR 9006 appeared to be the best performing cultivar and HTX 14 the worst. Seasonal evapotranspiration under FI was between 400 and 620 mm depending on the length of the season and harvesting time. Crop water productivity was generally higher for DI than FI treatments. Deficit irrigation appeared to be feasible to reduce water use for some cultivars (eg cv. STAR 9006), however, an economic analysis should be conducted at specific sites/farms to determine the impacts of DI on farmers’ income as some yield losses can be expected during drought years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
South African Journal of Plant and Soil
South African Journal of Plant and Soil Agricultural and Biological Sciences-Plant Science
CiteScore
1.90
自引率
11.10%
发文量
32
期刊介绍: The Journal has a proud history of publishing quality papers in the fields of applied plant and soil sciences and has, since its inception, recorded a vast body of scientific information with particular reference to South Africa.
期刊最新文献
Digital soil mapping enables informed decision-making to conserve soils within protected areas The effect of crop rotation on soil health in the north-western Free State region, South Africa A bioassay of mine-affected soils and ameliorants in semi-arid rehabilitation Determination of optimal soil pH and nutrient concentrations for cultivated rooibos tea using the boundary line approach Rooting potential of the ‘vleitee’ honeybush ( Cyclopia subternata ) as affected by growth season and the manipulation of stock plant characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1