高消光比小足迹等离子体布拉格光栅结构的数值研究

IF 0.5 Q4 OPTICS Photonics Letters of Poland Pub Date : 2020-09-30 DOI:10.4302/PLP.V12I3.1042
M. A. Butt
{"title":"高消光比小足迹等离子体布拉格光栅结构的数值研究","authors":"M. A. Butt","doi":"10.4302/PLP.V12I3.1042","DOIUrl":null,"url":null,"abstract":"In this paper, miniaturized design of a plasmonic Bragg grating filter is investigated via the finite element method (FEM). The filter is based on a plasmonic metal-insulator-metal waveguide deposited on a quartz substrate. The corrugated Bragg grating designed for near-infrared wavelength range is structured on both sides of the waveguide. The spectral characteristics of the filter are studied by varying the geometric parameters of the filter design. As a result, the maximum ER and bandwidth of 36.2 dB and 173 nm is obtained at λ Bragg =976 nm with a filter footprint of as small as 1.0 x 8.75 µm 2 , respectively. The ER and bandwidth can be further improved by increasing the number of grating periods and the strength of the grating, respectively. Moreover, the Bragg grating structure is quite receptive to the refractive index of the medium. These features allow the employment of materials such as polymers in the metal-insulator-metal waveguide which can be externally tuned or it can be used for refractive index sensing applications. The sensitivity of the proposed Bragg grating structure can offer a sensitivity of 950 nm/RIU. We believe that the study presented in this paper provides a guideline for the realization of small footprint plasmonic Bragg grating structures which can be employed in filter and refractive index sensing applications. Full Text: PDF References J. W. Field et al., \"Miniaturised, Planar, Integrated Bragg Grating Spectrometer\", 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2019, CrossRef L. Cheng, S. Mao, Z. Li, Y. Han, H.Y. Fu, \"Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues\", Micromachines, 11, 666 (2020). CrossRef J. Missinne, N. T. Beneitez, M-A. Mattelin, A. Lamberti, G. Luyckx, W. V. Paepegem, G. V. Steenberge, \"Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths\", Sensors, 18, 2717 (2018). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, \"Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications\", Journal of Modern Optics, 66, 1172-1178 (2019). CrossRef H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, X. Jiang, \"Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide\", Optics Letters, 41, 2450 (2016). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, \"Optical elements based on silicon photonics\", Computer Optics, 43, 1079-1083 (2019). CrossRef N. L. Kazanskiy, S.N. Khonina, M.A. Butt, \"Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review\", Physica E, 117, 113798 (2020). CrossRef L. Lu et al, \"Mode-Selective Hybrid Plasmonic Bragg Grating Reflector\", IEEE Photonics Technology Letters, 22, 1765-1767 (2012). CrossRef R. Negahdari, E. Rafiee, F. Emami, \"Design and simulation of a novel nano-plasmonic split-ring resonator filter\", Journal of Electromagnetic Waves and Applications, 32, 1925-1938 (2018). CrossRef M. Janfaza, M. A. Mansouri-Birjandi, \"Tunable plasmonic band-pass filter based on Fabry–Perot graphene nanoribbons\", Applied Physics B, 123, 262 (2017). CrossRef C. Wu, G. Song, L. Yu, J.H. Xiao, \"Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal–insulator–metal waveguide\", Journal of Modern Optics, 60, 1217-1222 (2013). CrossRef J. Zhu, G. Wang, \"Sense high refractive index sensitivity with bragg grating and MIM nanocavity\", Results in Physics, 15, 102763 (2019). CrossRef Y. Binfeng, H. Guohua, C. Yiping, \"Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating\", Optics Express, 22, 28662-28670 (2014). CrossRef A.D. Simard, Y. Painchaud, S. Larochelle, \"Small-footprint integrated Bragg gratings in SOI spiral waveguides\", International Quantum Electronics Conference Lasers and Electro-Optics Europe, IEEE, Munich, Germany (2013). CrossRef C. Klitis, G. Cantarella, M. J. Strain, M. Sorel, \"High-extinction-ratio TE/TM selective Bragg grating filters on silicon-on-insulator\", Optics Letters, 42, 3040 (2017). CrossRef J. Ctyroky et al., \"Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides\", Optics Express, 26, 179 (2018). CrossRef M.A. Butt, N.L. Kazanskiy, S.N. Khonina, \"Hybrid plasmonic waveguide race-track µ-ring resonator: Analysis of dielectric and hybrid mode for refractive index sensing applications\", Laser Phys., 30, 016202 (2020). CrossRef M. A. Butt, N.L. Kazanskiy, S.N. Khonina, \"Label-free detection of ambient refractive index based on plasmonic Bragg gratings embedded resonator cavity sensor\", Journal of Modern Optics, 66, 1920-1925 (2019). CrossRef N. L. Kazanskiy, M.A. Butt, Photonics Letters of Poland, 12, 1-3 (2020). CrossRef Z. Guo, K. Wen, Q. Hu, W. Lai, J. Lin, Y. Fang, \"Plasmonic Multichannel Refractive Index Sensor Based on Subwavelength Tangent-Ring Metal–Insulator–Metal Waveguide\", Sensors, 18, 1348 (2018). CrossRef","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":"12 1","pages":"82-84"},"PeriodicalIF":0.5000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio\",\"authors\":\"M. A. Butt\",\"doi\":\"10.4302/PLP.V12I3.1042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, miniaturized design of a plasmonic Bragg grating filter is investigated via the finite element method (FEM). The filter is based on a plasmonic metal-insulator-metal waveguide deposited on a quartz substrate. The corrugated Bragg grating designed for near-infrared wavelength range is structured on both sides of the waveguide. The spectral characteristics of the filter are studied by varying the geometric parameters of the filter design. As a result, the maximum ER and bandwidth of 36.2 dB and 173 nm is obtained at λ Bragg =976 nm with a filter footprint of as small as 1.0 x 8.75 µm 2 , respectively. The ER and bandwidth can be further improved by increasing the number of grating periods and the strength of the grating, respectively. Moreover, the Bragg grating structure is quite receptive to the refractive index of the medium. These features allow the employment of materials such as polymers in the metal-insulator-metal waveguide which can be externally tuned or it can be used for refractive index sensing applications. The sensitivity of the proposed Bragg grating structure can offer a sensitivity of 950 nm/RIU. We believe that the study presented in this paper provides a guideline for the realization of small footprint plasmonic Bragg grating structures which can be employed in filter and refractive index sensing applications. Full Text: PDF References J. W. Field et al., \\\"Miniaturised, Planar, Integrated Bragg Grating Spectrometer\\\", 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2019, CrossRef L. Cheng, S. Mao, Z. Li, Y. Han, H.Y. Fu, \\\"Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues\\\", Micromachines, 11, 666 (2020). CrossRef J. Missinne, N. T. Beneitez, M-A. Mattelin, A. Lamberti, G. Luyckx, W. V. Paepegem, G. V. Steenberge, \\\"Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths\\\", Sensors, 18, 2717 (2018). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, \\\"Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications\\\", Journal of Modern Optics, 66, 1172-1178 (2019). CrossRef H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, X. Jiang, \\\"Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide\\\", Optics Letters, 41, 2450 (2016). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, \\\"Optical elements based on silicon photonics\\\", Computer Optics, 43, 1079-1083 (2019). CrossRef N. L. Kazanskiy, S.N. Khonina, M.A. Butt, \\\"Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review\\\", Physica E, 117, 113798 (2020). CrossRef L. Lu et al, \\\"Mode-Selective Hybrid Plasmonic Bragg Grating Reflector\\\", IEEE Photonics Technology Letters, 22, 1765-1767 (2012). CrossRef R. Negahdari, E. Rafiee, F. Emami, \\\"Design and simulation of a novel nano-plasmonic split-ring resonator filter\\\", Journal of Electromagnetic Waves and Applications, 32, 1925-1938 (2018). CrossRef M. Janfaza, M. A. Mansouri-Birjandi, \\\"Tunable plasmonic band-pass filter based on Fabry–Perot graphene nanoribbons\\\", Applied Physics B, 123, 262 (2017). CrossRef C. Wu, G. Song, L. Yu, J.H. Xiao, \\\"Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal–insulator–metal waveguide\\\", Journal of Modern Optics, 60, 1217-1222 (2013). CrossRef J. Zhu, G. Wang, \\\"Sense high refractive index sensitivity with bragg grating and MIM nanocavity\\\", Results in Physics, 15, 102763 (2019). CrossRef Y. Binfeng, H. Guohua, C. Yiping, \\\"Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating\\\", Optics Express, 22, 28662-28670 (2014). CrossRef A.D. Simard, Y. Painchaud, S. Larochelle, \\\"Small-footprint integrated Bragg gratings in SOI spiral waveguides\\\", International Quantum Electronics Conference Lasers and Electro-Optics Europe, IEEE, Munich, Germany (2013). CrossRef C. Klitis, G. Cantarella, M. J. Strain, M. Sorel, \\\"High-extinction-ratio TE/TM selective Bragg grating filters on silicon-on-insulator\\\", Optics Letters, 42, 3040 (2017). CrossRef J. Ctyroky et al., \\\"Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides\\\", Optics Express, 26, 179 (2018). CrossRef M.A. Butt, N.L. Kazanskiy, S.N. Khonina, \\\"Hybrid plasmonic waveguide race-track µ-ring resonator: Analysis of dielectric and hybrid mode for refractive index sensing applications\\\", Laser Phys., 30, 016202 (2020). CrossRef M. A. Butt, N.L. Kazanskiy, S.N. Khonina, \\\"Label-free detection of ambient refractive index based on plasmonic Bragg gratings embedded resonator cavity sensor\\\", Journal of Modern Optics, 66, 1920-1925 (2019). CrossRef N. L. Kazanskiy, M.A. Butt, Photonics Letters of Poland, 12, 1-3 (2020). CrossRef Z. Guo, K. Wen, Q. Hu, W. Lai, J. Lin, Y. Fang, \\\"Plasmonic Multichannel Refractive Index Sensor Based on Subwavelength Tangent-Ring Metal–Insulator–Metal Waveguide\\\", Sensors, 18, 1348 (2018). CrossRef\",\"PeriodicalId\":20055,\"journal\":{\"name\":\"Photonics Letters of Poland\",\"volume\":\"12 1\",\"pages\":\"82-84\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Letters of Poland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4302/PLP.V12I3.1042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/PLP.V12I3.1042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 18

摘要

巴特,波兰光子学快报,12,1-3(2020)。CrossRef Guo,K.Wen,Q.Hu,W.Lai,J.Lin,Y.Fang,“基于亚波长切环金属-绝缘体-金属波导的等离子体多通道折射率传感器”,传感器,181348(2018)。CrossRef
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical investigation of a small footprint plasmonic Bragg grating structure with a high extinction ratio
In this paper, miniaturized design of a plasmonic Bragg grating filter is investigated via the finite element method (FEM). The filter is based on a plasmonic metal-insulator-metal waveguide deposited on a quartz substrate. The corrugated Bragg grating designed for near-infrared wavelength range is structured on both sides of the waveguide. The spectral characteristics of the filter are studied by varying the geometric parameters of the filter design. As a result, the maximum ER and bandwidth of 36.2 dB and 173 nm is obtained at λ Bragg =976 nm with a filter footprint of as small as 1.0 x 8.75 µm 2 , respectively. The ER and bandwidth can be further improved by increasing the number of grating periods and the strength of the grating, respectively. Moreover, the Bragg grating structure is quite receptive to the refractive index of the medium. These features allow the employment of materials such as polymers in the metal-insulator-metal waveguide which can be externally tuned or it can be used for refractive index sensing applications. The sensitivity of the proposed Bragg grating structure can offer a sensitivity of 950 nm/RIU. We believe that the study presented in this paper provides a guideline for the realization of small footprint plasmonic Bragg grating structures which can be employed in filter and refractive index sensing applications. Full Text: PDF References J. W. Field et al., "Miniaturised, Planar, Integrated Bragg Grating Spectrometer", 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2019, CrossRef L. Cheng, S. Mao, Z. Li, Y. Han, H.Y. Fu, "Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues", Micromachines, 11, 666 (2020). CrossRef J. Missinne, N. T. Beneitez, M-A. Mattelin, A. Lamberti, G. Luyckx, W. V. Paepegem, G. V. Steenberge, "Bragg-Grating-Based Photonic Strain and Temperature Sensor Foils Realized Using Imprinting and Operating at Very Near Infrared Wavelengths", Sensors, 18, 2717 (2018). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, "Numerical analysis of a miniaturized design of a Fabry–Perot resonator based on silicon strip and slot waveguides for bio-sensing applications", Journal of Modern Optics, 66, 1172-1178 (2019). CrossRef H. Qiu, J. Jiang, P. Yu, T. Dai, J. Yang, H. Yu, X. Jiang, "Silicon band-rejection and band-pass filter based on asymmetric Bragg sidewall gratings in a multimode waveguide", Optics Letters, 41, 2450 (2016). CrossRef M. A. Butt, S.N. Khonina, N.L. Kazanskiy, "Optical elements based on silicon photonics", Computer Optics, 43, 1079-1083 (2019). CrossRef N. L. Kazanskiy, S.N. Khonina, M.A. Butt, "Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review", Physica E, 117, 113798 (2020). CrossRef L. Lu et al, "Mode-Selective Hybrid Plasmonic Bragg Grating Reflector", IEEE Photonics Technology Letters, 22, 1765-1767 (2012). CrossRef R. Negahdari, E. Rafiee, F. Emami, "Design and simulation of a novel nano-plasmonic split-ring resonator filter", Journal of Electromagnetic Waves and Applications, 32, 1925-1938 (2018). CrossRef M. Janfaza, M. A. Mansouri-Birjandi, "Tunable plasmonic band-pass filter based on Fabry–Perot graphene nanoribbons", Applied Physics B, 123, 262 (2017). CrossRef C. Wu, G. Song, L. Yu, J.H. Xiao, "Tunable narrow band filter based on a surface plasmon polaritons Bragg grating with a metal–insulator–metal waveguide", Journal of Modern Optics, 60, 1217-1222 (2013). CrossRef J. Zhu, G. Wang, "Sense high refractive index sensitivity with bragg grating and MIM nanocavity", Results in Physics, 15, 102763 (2019). CrossRef Y. Binfeng, H. Guohua, C. Yiping, "Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating", Optics Express, 22, 28662-28670 (2014). CrossRef A.D. Simard, Y. Painchaud, S. Larochelle, "Small-footprint integrated Bragg gratings in SOI spiral waveguides", International Quantum Electronics Conference Lasers and Electro-Optics Europe, IEEE, Munich, Germany (2013). CrossRef C. Klitis, G. Cantarella, M. J. Strain, M. Sorel, "High-extinction-ratio TE/TM selective Bragg grating filters on silicon-on-insulator", Optics Letters, 42, 3040 (2017). CrossRef J. Ctyroky et al., "Design of narrowband Bragg spectral filters in subwavelength grating metamaterial waveguides", Optics Express, 26, 179 (2018). CrossRef M.A. Butt, N.L. Kazanskiy, S.N. Khonina, "Hybrid plasmonic waveguide race-track µ-ring resonator: Analysis of dielectric and hybrid mode for refractive index sensing applications", Laser Phys., 30, 016202 (2020). CrossRef M. A. Butt, N.L. Kazanskiy, S.N. Khonina, "Label-free detection of ambient refractive index based on plasmonic Bragg gratings embedded resonator cavity sensor", Journal of Modern Optics, 66, 1920-1925 (2019). CrossRef N. L. Kazanskiy, M.A. Butt, Photonics Letters of Poland, 12, 1-3 (2020). CrossRef Z. Guo, K. Wen, Q. Hu, W. Lai, J. Lin, Y. Fang, "Plasmonic Multichannel Refractive Index Sensor Based on Subwavelength Tangent-Ring Metal–Insulator–Metal Waveguide", Sensors, 18, 1348 (2018). CrossRef
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
24
期刊最新文献
Making use of Digital Image Correlation to identify the true character of the applied load Technological challenges in the development of silica-titania platform for integrated optics Modelling of Germanium-Based Perovskite Solar Cell for Different Hole Transport Materials and Defect Density Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries Focusing properties of Azimuthally Polarized Lorentz Gauss Vortex Beam through a Dielectric Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1