哺乳动物真菌病原体中的LysM蛋白

IF 5.7 2区 生物学 Q1 MYCOLOGY Fungal Biology Reviews Pub Date : 2022-06-01 DOI:10.1016/j.fbr.2022.02.001
José A. Oguiza
{"title":"哺乳动物真菌病原体中的LysM蛋白","authors":"José A. Oguiza","doi":"10.1016/j.fbr.2022.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>The LysM domain is a highly conserved carbohydrate-binding module that recognizes polysaccharides containing N-acetylglucosamine residues. LysM domains are found in a wide variety of extracellular proteins and receptors from viruses, bacteria, fungi, plants and animals. LysM proteins are also present in many species of mammalian fungal pathogens, although a limited number of studies have focused on the expression and determination of their putative roles in the infection process. This review summarizes the current knowledge and recent studies on LysM proteins in the main morphological groups of fungal pathogens that cause infections in humans and other mammals. Recent advances towards understanding the biological functions of LysM proteins in infections of mammalian hosts and their use as potential targets in antifungal strategies are also discussed.</p></div>","PeriodicalId":12563,"journal":{"name":"Fungal Biology Reviews","volume":"40 ","pages":"Pages 114-122"},"PeriodicalIF":5.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1749461322000082/pdfft?md5=3485aa362a6567b92b883c6099b71075&pid=1-s2.0-S1749461322000082-main.pdf","citationCount":"2","resultStr":"{\"title\":\"LysM proteins in mammalian fungal pathogens\",\"authors\":\"José A. Oguiza\",\"doi\":\"10.1016/j.fbr.2022.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The LysM domain is a highly conserved carbohydrate-binding module that recognizes polysaccharides containing N-acetylglucosamine residues. LysM domains are found in a wide variety of extracellular proteins and receptors from viruses, bacteria, fungi, plants and animals. LysM proteins are also present in many species of mammalian fungal pathogens, although a limited number of studies have focused on the expression and determination of their putative roles in the infection process. This review summarizes the current knowledge and recent studies on LysM proteins in the main morphological groups of fungal pathogens that cause infections in humans and other mammals. Recent advances towards understanding the biological functions of LysM proteins in infections of mammalian hosts and their use as potential targets in antifungal strategies are also discussed.</p></div>\",\"PeriodicalId\":12563,\"journal\":{\"name\":\"Fungal Biology Reviews\",\"volume\":\"40 \",\"pages\":\"Pages 114-122\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1749461322000082/pdfft?md5=3485aa362a6567b92b883c6099b71075&pid=1-s2.0-S1749461322000082-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749461322000082\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749461322000082","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

LysM结构域是一个高度保守的碳水化合物结合模块,可识别含有n -乙酰氨基葡萄糖残基的多糖。LysM结构域广泛存在于病毒、细菌、真菌、植物和动物的细胞外蛋白和受体中。LysM蛋白也存在于许多种类的哺乳动物真菌病原体中,尽管有限数量的研究集中在表达和确定其在感染过程中的假定作用。本文综述了引起人类和其他哺乳动物感染的真菌病原体的主要形态学类群中LysM蛋白的现有知识和最新研究。本文还讨论了LysM蛋白在哺乳动物宿主感染中的生物学功能及其在抗真菌策略中的潜在靶点的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LysM proteins in mammalian fungal pathogens

The LysM domain is a highly conserved carbohydrate-binding module that recognizes polysaccharides containing N-acetylglucosamine residues. LysM domains are found in a wide variety of extracellular proteins and receptors from viruses, bacteria, fungi, plants and animals. LysM proteins are also present in many species of mammalian fungal pathogens, although a limited number of studies have focused on the expression and determination of their putative roles in the infection process. This review summarizes the current knowledge and recent studies on LysM proteins in the main morphological groups of fungal pathogens that cause infections in humans and other mammals. Recent advances towards understanding the biological functions of LysM proteins in infections of mammalian hosts and their use as potential targets in antifungal strategies are also discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.60
自引率
0.00%
发文量
36
期刊介绍: Fungal Biology Reviews is an international reviews journal, owned by the British Mycological Society. Its objective is to provide a forum for high quality review articles within fungal biology. It covers all fields of fungal biology, whether fundamental or applied, including fungal diversity, ecology, evolution, physiology and ecophysiology, biochemistry, genetics and molecular biology, cell biology, interactions (symbiosis, pathogenesis etc), environmental aspects, biotechnology and taxonomy. It considers aspects of all organisms historically or recently recognized as fungi, including lichen-fungi, microsporidia, oomycetes, slime moulds, stramenopiles, and yeasts.
期刊最新文献
Combination of fluconazole with natural compounds: A promising strategy to manage resistant Candida albicans infections The intricate dance: Exploring the interactions between entomopathogenic fungi and insects with special focus on the formation/production of Chinese cordyceps Challenges in maize production: A review on late wilt disease control strategies CRISPR/Cas9: A cutting-edge tool for cellulase enhancement in fungi A systematic review of abiotic factors influencing the production of plant cell wall-degrading enzymes in Botryosphaeriaceae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1