B. Lakshmeesha Rao, Mahadev Gowda, S. Asha, K. Byrappa, B. Narayana, R. Somashekar, Y. Wang, L. N. Madhu, Y. Sangappa
{"title":"利用丝素蛋白快速合成金纳米粒子:表征、抗菌活性和抗癌特性","authors":"B. Lakshmeesha Rao, Mahadev Gowda, S. Asha, K. Byrappa, B. Narayana, R. Somashekar, Y. Wang, L. N. Madhu, Y. Sangappa","doi":"10.1007/s13404-017-0218-8","DOIUrl":null,"url":null,"abstract":"<p>In the present work, well-dispersed gold nanoparticles (AuNPs) were synthesised by the reduction of HAuCl<sub>4.</sub>xH<sub>2</sub>O using silk fibroin as a reducing agent. UV-visible spectroscopy confirmed the formation of AuNPs by showing surface plasmon resonance (SPR) at 526–518?nm. The FT-IR study revealed that the hydroxyl groups in the Tyr residue and the carboxyl groups in the Asp and/or Glu residues were the most active functional groups for the conversion of Au ion reduction. The transmission electron microscope (TEM) images showed that the formed nanoparticles were uniformly embedded in the silk fibroin solution. The AuNPs are spherical in shape with smooth edges and around 5–8?nm in diameter. Also, these possess very good stability and dispersity and can be stored for a long period. Further, the X-ray diffraction (XRD) study confirmed the nanocrystalline phase of the gold with cubic crystal structure. The biogenic gold nanoparticles displayed antibacterial activity against Gram-positive and Gram-negative bacteria, and also showed promising anticancer properties.</p>","PeriodicalId":55086,"journal":{"name":"Gold Bulletin","volume":"50 4","pages":"289 - 297"},"PeriodicalIF":2.2000,"publicationDate":"2017-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13404-017-0218-8","citationCount":"31","resultStr":"{\"title\":\"Rapid synthesis of gold nanoparticles using silk fibroin: characterization, antibacterial activity, and anticancer properties\",\"authors\":\"B. Lakshmeesha Rao, Mahadev Gowda, S. Asha, K. Byrappa, B. Narayana, R. Somashekar, Y. Wang, L. N. Madhu, Y. Sangappa\",\"doi\":\"10.1007/s13404-017-0218-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present work, well-dispersed gold nanoparticles (AuNPs) were synthesised by the reduction of HAuCl<sub>4.</sub>xH<sub>2</sub>O using silk fibroin as a reducing agent. UV-visible spectroscopy confirmed the formation of AuNPs by showing surface plasmon resonance (SPR) at 526–518?nm. The FT-IR study revealed that the hydroxyl groups in the Tyr residue and the carboxyl groups in the Asp and/or Glu residues were the most active functional groups for the conversion of Au ion reduction. The transmission electron microscope (TEM) images showed that the formed nanoparticles were uniformly embedded in the silk fibroin solution. The AuNPs are spherical in shape with smooth edges and around 5–8?nm in diameter. Also, these possess very good stability and dispersity and can be stored for a long period. Further, the X-ray diffraction (XRD) study confirmed the nanocrystalline phase of the gold with cubic crystal structure. The biogenic gold nanoparticles displayed antibacterial activity against Gram-positive and Gram-negative bacteria, and also showed promising anticancer properties.</p>\",\"PeriodicalId\":55086,\"journal\":{\"name\":\"Gold Bulletin\",\"volume\":\"50 4\",\"pages\":\"289 - 297\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2017-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13404-017-0218-8\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gold Bulletin\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13404-017-0218-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gold Bulletin","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13404-017-0218-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Rapid synthesis of gold nanoparticles using silk fibroin: characterization, antibacterial activity, and anticancer properties
In the present work, well-dispersed gold nanoparticles (AuNPs) were synthesised by the reduction of HAuCl4.xH2O using silk fibroin as a reducing agent. UV-visible spectroscopy confirmed the formation of AuNPs by showing surface plasmon resonance (SPR) at 526–518?nm. The FT-IR study revealed that the hydroxyl groups in the Tyr residue and the carboxyl groups in the Asp and/or Glu residues were the most active functional groups for the conversion of Au ion reduction. The transmission electron microscope (TEM) images showed that the formed nanoparticles were uniformly embedded in the silk fibroin solution. The AuNPs are spherical in shape with smooth edges and around 5–8?nm in diameter. Also, these possess very good stability and dispersity and can be stored for a long period. Further, the X-ray diffraction (XRD) study confirmed the nanocrystalline phase of the gold with cubic crystal structure. The biogenic gold nanoparticles displayed antibacterial activity against Gram-positive and Gram-negative bacteria, and also showed promising anticancer properties.
期刊介绍:
Gold Bulletin is the premier international peer reviewed journal on the latest science, technology and applications of gold. It includes papers on the latest research advances, state-of-the-art reviews, conference reports, book reviews and highlights of patents and scientific literature. Gold Bulletin does not publish manuscripts covering the snthesis of Gold nanoparticles in the presence of plant extracts or other nature-derived extracts. Gold Bulletin has been published over 40 years as a multidisciplinary journal read by chemists, physicists, engineers, metallurgists, materials scientists, biotechnologists, surface scientists, and nanotechnologists amongst others, both within industry and academia. Gold Bulletin is published in Association with the World Gold Council.