{"title":"回归基础教程:薄膜的x射线衍射","authors":"George F. Harrington, José Santiso","doi":"10.1007/s10832-021-00263-6","DOIUrl":null,"url":null,"abstract":"<div><p>X-ray diffraction (XRD) is an indispensable tool for characterising thin films of electroceramic materials. For the beginner, however, it can be a daunting technique at first due to the number of operation modes and measurements types, as well as the interpretation of the resultant patterns and scans. In this tutorial article, we provide a foundation for the thin-film engineer/scientist conducting their first measurements using XRD. We give a brief introduction of the principle of diffraction and description of the instrument, detailing the relevant operation modes. Next, we introduce five types of measurements essential for thin film characterisation: <span>\\(2\\theta /\\omega\\)</span> scans, grazing-incidence scans, rocking curves, pole figures, and azimuth scans (or ϕ scans). Practical guidelines for selecting the appropriate optics, mounting and aligning the sample, and selecting scan conditions are given. Finally, we discuss some of the basics of data analysis, and give recommendations on the presentation of data. The aim of this article is to ultimately lower the barrier for researchers to perform meaningful XRD analysis, and, building on this foundation, find the existing literature more accessible, enabling more advanced XRD investigations.\n</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"47 4","pages":"141 - 163"},"PeriodicalIF":1.7000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Back-to-Basics tutorial: X-ray diffraction of thin films\",\"authors\":\"George F. Harrington, José Santiso\",\"doi\":\"10.1007/s10832-021-00263-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>X-ray diffraction (XRD) is an indispensable tool for characterising thin films of electroceramic materials. For the beginner, however, it can be a daunting technique at first due to the number of operation modes and measurements types, as well as the interpretation of the resultant patterns and scans. In this tutorial article, we provide a foundation for the thin-film engineer/scientist conducting their first measurements using XRD. We give a brief introduction of the principle of diffraction and description of the instrument, detailing the relevant operation modes. Next, we introduce five types of measurements essential for thin film characterisation: <span>\\\\(2\\\\theta /\\\\omega\\\\)</span> scans, grazing-incidence scans, rocking curves, pole figures, and azimuth scans (or ϕ scans). Practical guidelines for selecting the appropriate optics, mounting and aligning the sample, and selecting scan conditions are given. Finally, we discuss some of the basics of data analysis, and give recommendations on the presentation of data. The aim of this article is to ultimately lower the barrier for researchers to perform meaningful XRD analysis, and, building on this foundation, find the existing literature more accessible, enabling more advanced XRD investigations.\\n</p></div>\",\"PeriodicalId\":625,\"journal\":{\"name\":\"Journal of Electroceramics\",\"volume\":\"47 4\",\"pages\":\"141 - 163\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10832-021-00263-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-021-00263-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Back-to-Basics tutorial: X-ray diffraction of thin films
X-ray diffraction (XRD) is an indispensable tool for characterising thin films of electroceramic materials. For the beginner, however, it can be a daunting technique at first due to the number of operation modes and measurements types, as well as the interpretation of the resultant patterns and scans. In this tutorial article, we provide a foundation for the thin-film engineer/scientist conducting their first measurements using XRD. We give a brief introduction of the principle of diffraction and description of the instrument, detailing the relevant operation modes. Next, we introduce five types of measurements essential for thin film characterisation: \(2\theta /\omega\) scans, grazing-incidence scans, rocking curves, pole figures, and azimuth scans (or ϕ scans). Practical guidelines for selecting the appropriate optics, mounting and aligning the sample, and selecting scan conditions are given. Finally, we discuss some of the basics of data analysis, and give recommendations on the presentation of data. The aim of this article is to ultimately lower the barrier for researchers to perform meaningful XRD analysis, and, building on this foundation, find the existing literature more accessible, enabling more advanced XRD investigations.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.