Hiram Eli Torres Soto, F. Abreu Araujo, J. de la Torre Medina
{"title":"无序三维NixCo1−x逆蛋白石网络的磁输运行为","authors":"Hiram Eli Torres Soto, F. Abreu Araujo, J. de la Torre Medina","doi":"10.31349/revmexfis.69.041603","DOIUrl":null,"url":null,"abstract":"\n\n\nHerein we report on the magneto-transport properties of disordered three dimensional inverse opals (3D-IOs) fabricated by a standard three-probe electrodeposition technique into the interstices of porous membranes made of 150 nm diameter self assembled poly(methyl methacrylate) spheres. This approach has allowed the synthesis of large scale nanocomposites with exact ferromagnetic NixCo1−x alloy compositions and complex interconnected structure. Particularly, the microstructure of Co-rich 3D-IOs is consistent with the hexagonal close packed hcp texture and its corresponding magnetoresistance is explained in terms of the hcp Co magnetocrystalline anisotropy contribution. Conversely, the magnetoresistive behavior of Ni-rich 3D-IO networks is explained in terms of only their magnetostatic field. The control of these features is made possible by the reduced dimensions of necks and walls, in the 40 nm to 60 nm range, of the 3D-IO structure. Despite the disordered morphology of these 3D-IO nanoarchitectures, their microstructural and magneto-transport properties can be fine tuned due to the reduced nanoscale dimensions of the electrical interconnections. These properties have been found to be comparable to those obtained in other 3D networks, making them interesting systems for their potential use for magnetic sensing and spintronic applications.\n\n\n","PeriodicalId":21538,"journal":{"name":"Revista Mexicana De Fisica","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magneto-transport behavior of disordered three dimensional NixCo1−x inverse opal networks\",\"authors\":\"Hiram Eli Torres Soto, F. Abreu Araujo, J. de la Torre Medina\",\"doi\":\"10.31349/revmexfis.69.041603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\n\\nHerein we report on the magneto-transport properties of disordered three dimensional inverse opals (3D-IOs) fabricated by a standard three-probe electrodeposition technique into the interstices of porous membranes made of 150 nm diameter self assembled poly(methyl methacrylate) spheres. This approach has allowed the synthesis of large scale nanocomposites with exact ferromagnetic NixCo1−x alloy compositions and complex interconnected structure. Particularly, the microstructure of Co-rich 3D-IOs is consistent with the hexagonal close packed hcp texture and its corresponding magnetoresistance is explained in terms of the hcp Co magnetocrystalline anisotropy contribution. Conversely, the magnetoresistive behavior of Ni-rich 3D-IO networks is explained in terms of only their magnetostatic field. The control of these features is made possible by the reduced dimensions of necks and walls, in the 40 nm to 60 nm range, of the 3D-IO structure. Despite the disordered morphology of these 3D-IO nanoarchitectures, their microstructural and magneto-transport properties can be fine tuned due to the reduced nanoscale dimensions of the electrical interconnections. These properties have been found to be comparable to those obtained in other 3D networks, making them interesting systems for their potential use for magnetic sensing and spintronic applications.\\n\\n\\n\",\"PeriodicalId\":21538,\"journal\":{\"name\":\"Revista Mexicana De Fisica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Mexicana De Fisica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.31349/revmexfis.69.041603\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Mexicana De Fisica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.31349/revmexfis.69.041603","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Magneto-transport behavior of disordered three dimensional NixCo1−x inverse opal networks
Herein we report on the magneto-transport properties of disordered three dimensional inverse opals (3D-IOs) fabricated by a standard three-probe electrodeposition technique into the interstices of porous membranes made of 150 nm diameter self assembled poly(methyl methacrylate) spheres. This approach has allowed the synthesis of large scale nanocomposites with exact ferromagnetic NixCo1−x alloy compositions and complex interconnected structure. Particularly, the microstructure of Co-rich 3D-IOs is consistent with the hexagonal close packed hcp texture and its corresponding magnetoresistance is explained in terms of the hcp Co magnetocrystalline anisotropy contribution. Conversely, the magnetoresistive behavior of Ni-rich 3D-IO networks is explained in terms of only their magnetostatic field. The control of these features is made possible by the reduced dimensions of necks and walls, in the 40 nm to 60 nm range, of the 3D-IO structure. Despite the disordered morphology of these 3D-IO nanoarchitectures, their microstructural and magneto-transport properties can be fine tuned due to the reduced nanoscale dimensions of the electrical interconnections. These properties have been found to be comparable to those obtained in other 3D networks, making them interesting systems for their potential use for magnetic sensing and spintronic applications.
期刊介绍:
Durante los últimos años, los responsables de la Revista Mexicana de Física, la Revista Mexicana de Física E y la Revista Mexicana de Física S, hemos realizado esfuerzos para fortalecer la presencia de estas publicaciones en nuestra página Web ( http://rmf.smf.mx).