A.A.A. Sheha , K.A. Ibrahim , H.A. Abdalla , I.M. Sakr , Samy M. El-Behery
{"title":"埃及某海上油田水-油轴向喷射泵性能优化","authors":"A.A.A. Sheha , K.A. Ibrahim , H.A. Abdalla , I.M. Sakr , Samy M. El-Behery","doi":"10.1016/j.ptlrs.2023.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>The jet pump is an artificial lift employed when the reservoir pressure declines and the well deviation increases. The use of computer well models for optimizing the oil well output has proven to be a successful strategy, and has helped increasing the efficiency and production of numerous wells. The objective of this study was to use a production optimization technique that achieves some improvements, and recommend approaches toward increasing the oil well production. The effects of the motive fluid flow rate and pressure on the oil production rate were investigated to determine the optimal injection rate and pressure on the performance of the deep well water-oil axial jet-pump. Additionally, the effects of the well-head pressure, water cut, and roughness of tubing on oil production of this jet pump type were investigated. The results revealed that the impact on the oil lift performance is significant. The oil production increased by 19.43%, and the optimal economic value for the injection rate and pressure for the GA-1A well are 744.44 BFPD and 2722.22 psig, respectively. In summary, increasing the tubing roughness decreased the well's total liquid production. Thus, maintaining the well integrity is a very important factor because not doing so can lower the productivity by up to 20%–25%.</p></div>","PeriodicalId":19756,"journal":{"name":"Petroleum Research","volume":"8 4","pages":"Pages 561-571"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2096249523000492/pdfft?md5=5479c80360064c11e003055a014be651&pid=1-s2.0-S2096249523000492-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimal performance of water-oil axial jet pump in an egyptian offshore oil field\",\"authors\":\"A.A.A. Sheha , K.A. Ibrahim , H.A. Abdalla , I.M. Sakr , Samy M. El-Behery\",\"doi\":\"10.1016/j.ptlrs.2023.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The jet pump is an artificial lift employed when the reservoir pressure declines and the well deviation increases. The use of computer well models for optimizing the oil well output has proven to be a successful strategy, and has helped increasing the efficiency and production of numerous wells. The objective of this study was to use a production optimization technique that achieves some improvements, and recommend approaches toward increasing the oil well production. The effects of the motive fluid flow rate and pressure on the oil production rate were investigated to determine the optimal injection rate and pressure on the performance of the deep well water-oil axial jet-pump. Additionally, the effects of the well-head pressure, water cut, and roughness of tubing on oil production of this jet pump type were investigated. The results revealed that the impact on the oil lift performance is significant. The oil production increased by 19.43%, and the optimal economic value for the injection rate and pressure for the GA-1A well are 744.44 BFPD and 2722.22 psig, respectively. In summary, increasing the tubing roughness decreased the well's total liquid production. Thus, maintaining the well integrity is a very important factor because not doing so can lower the productivity by up to 20%–25%.</p></div>\",\"PeriodicalId\":19756,\"journal\":{\"name\":\"Petroleum Research\",\"volume\":\"8 4\",\"pages\":\"Pages 561-571\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2096249523000492/pdfft?md5=5479c80360064c11e003055a014be651&pid=1-s2.0-S2096249523000492-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Research\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096249523000492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096249523000492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Optimal performance of water-oil axial jet pump in an egyptian offshore oil field
The jet pump is an artificial lift employed when the reservoir pressure declines and the well deviation increases. The use of computer well models for optimizing the oil well output has proven to be a successful strategy, and has helped increasing the efficiency and production of numerous wells. The objective of this study was to use a production optimization technique that achieves some improvements, and recommend approaches toward increasing the oil well production. The effects of the motive fluid flow rate and pressure on the oil production rate were investigated to determine the optimal injection rate and pressure on the performance of the deep well water-oil axial jet-pump. Additionally, the effects of the well-head pressure, water cut, and roughness of tubing on oil production of this jet pump type were investigated. The results revealed that the impact on the oil lift performance is significant. The oil production increased by 19.43%, and the optimal economic value for the injection rate and pressure for the GA-1A well are 744.44 BFPD and 2722.22 psig, respectively. In summary, increasing the tubing roughness decreased the well's total liquid production. Thus, maintaining the well integrity is a very important factor because not doing so can lower the productivity by up to 20%–25%.