{"title":"数字孪生驱动的绿色材料优化选择与产品迭代设计演变","authors":"Feng Xiang, Ya-Dong Zhou, Zhi Zhang, Xiao-Fu Zou, Fei Tao, Ying Zuo","doi":"10.1007/s40436-023-00450-4","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, green concepts have been integrated into the product iterative design in the manufacturing field to address global competition and sustainability issues. However, previous efforts for green material optimal selection disregarded the interaction and fusion among physical entities, virtual models, and users, resulting in distortions and inaccuracies among user, physical entity, and virtual model such as inconsistency among the expected value, predicted simulation value, and actual performance value of evaluation indices. Therefore, this study proposes a digital twin-driven green material optimal selection and evolution method for product iterative design. Firstly, a novel framework is proposed. Subsequently, an analysis is carried out from six perspectives: the digital twin model construction for green material optimal selection, evolution mechanism of the digital twin model, multi-objective prediction and optimization, algorithm design, decision-making, and product function verification. Finally, taking the material selection of a shared bicycle frame as an example, the proposed method was verified by the prediction and iterative optimization of the carbon emission index.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"11 4","pages":"647 - 662"},"PeriodicalIF":4.2000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital twin-driven green material optimal selection and evolution in product iterative design\",\"authors\":\"Feng Xiang, Ya-Dong Zhou, Zhi Zhang, Xiao-Fu Zou, Fei Tao, Ying Zuo\",\"doi\":\"10.1007/s40436-023-00450-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, green concepts have been integrated into the product iterative design in the manufacturing field to address global competition and sustainability issues. However, previous efforts for green material optimal selection disregarded the interaction and fusion among physical entities, virtual models, and users, resulting in distortions and inaccuracies among user, physical entity, and virtual model such as inconsistency among the expected value, predicted simulation value, and actual performance value of evaluation indices. Therefore, this study proposes a digital twin-driven green material optimal selection and evolution method for product iterative design. Firstly, a novel framework is proposed. Subsequently, an analysis is carried out from six perspectives: the digital twin model construction for green material optimal selection, evolution mechanism of the digital twin model, multi-objective prediction and optimization, algorithm design, decision-making, and product function verification. Finally, taking the material selection of a shared bicycle frame as an example, the proposed method was verified by the prediction and iterative optimization of the carbon emission index.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"11 4\",\"pages\":\"647 - 662\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-023-00450-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-023-00450-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Digital twin-driven green material optimal selection and evolution in product iterative design
In recent years, green concepts have been integrated into the product iterative design in the manufacturing field to address global competition and sustainability issues. However, previous efforts for green material optimal selection disregarded the interaction and fusion among physical entities, virtual models, and users, resulting in distortions and inaccuracies among user, physical entity, and virtual model such as inconsistency among the expected value, predicted simulation value, and actual performance value of evaluation indices. Therefore, this study proposes a digital twin-driven green material optimal selection and evolution method for product iterative design. Firstly, a novel framework is proposed. Subsequently, an analysis is carried out from six perspectives: the digital twin model construction for green material optimal selection, evolution mechanism of the digital twin model, multi-objective prediction and optimization, algorithm design, decision-making, and product function verification. Finally, taking the material selection of a shared bicycle frame as an example, the proposed method was verified by the prediction and iterative optimization of the carbon emission index.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.