{"title":"绿色合成四氮唑的多组分反应方法","authors":"D. Ray","doi":"10.2174/2213337210666230222093637","DOIUrl":null,"url":null,"abstract":"\n\nThe synthesis of heterocyclic compounds has drawn considerable attention in the scientific community due to their existence in the majority of medicinal & pharmaceutically important compounds as well as natural products. Among them, the remarkable existence of tetrazoles has been realized in several commercially available drugs. In this regard, various synthetic protocols to access tetrazoles have been developed to address the efficiency and environmental impacts in terms of minimization of the steps, elevating yields, and conducting environmentally benign and sustainable chemistry. The management and detrimental environmental impact of waste has been recognised as a consistent concern, along with the costs associated with its disposal. Among various approaches to minimise unwanted materials from a process, one of the best alternatives is to perform a reaction in the absence of excess chemical reagents and catalysts. Other options include the reactions affected by the application of heat, light, sound, or electrolysis. The multicomponent reactions (MCR) display a unique approach establishing a step forward toward clean, step and atom-economical chemical synthesis. Most of them utilize the required substrates, eliminating the stoichiometric use of reagents, reducing the possibility of forming unwanted side products. The present review displays the concepts of MCR in the synthesis and functionalization of tetrazole, which contributes to green and sustainable chemistry.\n","PeriodicalId":10945,"journal":{"name":"Current Organocatalysis","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Greener Synthetic Approach to Tetrazoles via Multicomponent Reactions\",\"authors\":\"D. Ray\",\"doi\":\"10.2174/2213337210666230222093637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nThe synthesis of heterocyclic compounds has drawn considerable attention in the scientific community due to their existence in the majority of medicinal & pharmaceutically important compounds as well as natural products. Among them, the remarkable existence of tetrazoles has been realized in several commercially available drugs. In this regard, various synthetic protocols to access tetrazoles have been developed to address the efficiency and environmental impacts in terms of minimization of the steps, elevating yields, and conducting environmentally benign and sustainable chemistry. The management and detrimental environmental impact of waste has been recognised as a consistent concern, along with the costs associated with its disposal. Among various approaches to minimise unwanted materials from a process, one of the best alternatives is to perform a reaction in the absence of excess chemical reagents and catalysts. Other options include the reactions affected by the application of heat, light, sound, or electrolysis. The multicomponent reactions (MCR) display a unique approach establishing a step forward toward clean, step and atom-economical chemical synthesis. Most of them utilize the required substrates, eliminating the stoichiometric use of reagents, reducing the possibility of forming unwanted side products. The present review displays the concepts of MCR in the synthesis and functionalization of tetrazole, which contributes to green and sustainable chemistry.\\n\",\"PeriodicalId\":10945,\"journal\":{\"name\":\"Current Organocatalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Organocatalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2213337210666230222093637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Organocatalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2213337210666230222093637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Greener Synthetic Approach to Tetrazoles via Multicomponent Reactions
The synthesis of heterocyclic compounds has drawn considerable attention in the scientific community due to their existence in the majority of medicinal & pharmaceutically important compounds as well as natural products. Among them, the remarkable existence of tetrazoles has been realized in several commercially available drugs. In this regard, various synthetic protocols to access tetrazoles have been developed to address the efficiency and environmental impacts in terms of minimization of the steps, elevating yields, and conducting environmentally benign and sustainable chemistry. The management and detrimental environmental impact of waste has been recognised as a consistent concern, along with the costs associated with its disposal. Among various approaches to minimise unwanted materials from a process, one of the best alternatives is to perform a reaction in the absence of excess chemical reagents and catalysts. Other options include the reactions affected by the application of heat, light, sound, or electrolysis. The multicomponent reactions (MCR) display a unique approach establishing a step forward toward clean, step and atom-economical chemical synthesis. Most of them utilize the required substrates, eliminating the stoichiometric use of reagents, reducing the possibility of forming unwanted side products. The present review displays the concepts of MCR in the synthesis and functionalization of tetrazole, which contributes to green and sustainable chemistry.
期刊介绍:
Current Organocatalysis is an international peer-reviewed journal that publishes significant research in all areas of organocatalysis. The journal covers organo homogeneous/heterogeneous catalysis, innovative mechanistic studies and kinetics of organocatalytic processes focusing on practical, theoretical and computational aspects. It also includes potential applications of organocatalysts in the fields of drug discovery, synthesis of novel molecules, synthetic method development, green chemistry and chemoenzymatic reactions. This journal also accepts papers on methods, reagents, and mechanism of a synthetic process and technology pertaining to chemistry. Moreover, this journal features full-length/mini review articles within organocatalysis and synthetic chemistry. It is the premier source of organocatalysis and synthetic methods related information for chemists, biologists and engineers pursuing research in industry and academia.