中试三平行段多隔板精馏塔热损失的实验研究

IF 2.8 Q2 ENGINEERING, CHEMICAL ChemEngineering Pub Date : 2023-07-26 DOI:10.3390/chemengineering7040068
Lena-Marie Ränger, Yannick Waibel, Thomas Grützner
{"title":"中试三平行段多隔板精馏塔热损失的实验研究","authors":"Lena-Marie Ränger, Yannick Waibel, Thomas Grützner","doi":"10.3390/chemengineering7040068","DOIUrl":null,"url":null,"abstract":"For an in-depth investigation of the separation process in small-scale distillation columns, knowledge about the exact vapor load inside the column is highly important. However, since columns with small diameters have a comparatively high surface-to-volume ratio, heat losses have a significant impact on fluid dynamics, as they lead to unwanted condensation, and thus, to changes in the internal flows. This work presents a procedure used to measure heat losses in a 9.6 m high distillation column with three partially parallel segments (multiple dividing wall column). The evaporator is made of stainless steel, and the column walls are made of double-walled, evacuated, mirrored glass, and additionally, these can be heated. It is found that significant amounts of heat are lost in the evaporator. Throughout the column height, around 0.8 kW are additionally lost, even with external wall heating. To determine the main reason for this significant loss, thermal images are taken, indicating that the problem mainly arises because of the flanges. Based on this, it can be concluded that proper insulation and additional heating jackets for the column walls are highly recommended for small-scale distillation columns in order to increase their thermal efficiency.","PeriodicalId":9755,"journal":{"name":"ChemEngineering","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of Heat Losses in a Pilot-Scale Multiple Dividing Wall Distillation Column with Three Parallel Sections\",\"authors\":\"Lena-Marie Ränger, Yannick Waibel, Thomas Grützner\",\"doi\":\"10.3390/chemengineering7040068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an in-depth investigation of the separation process in small-scale distillation columns, knowledge about the exact vapor load inside the column is highly important. However, since columns with small diameters have a comparatively high surface-to-volume ratio, heat losses have a significant impact on fluid dynamics, as they lead to unwanted condensation, and thus, to changes in the internal flows. This work presents a procedure used to measure heat losses in a 9.6 m high distillation column with three partially parallel segments (multiple dividing wall column). The evaporator is made of stainless steel, and the column walls are made of double-walled, evacuated, mirrored glass, and additionally, these can be heated. It is found that significant amounts of heat are lost in the evaporator. Throughout the column height, around 0.8 kW are additionally lost, even with external wall heating. To determine the main reason for this significant loss, thermal images are taken, indicating that the problem mainly arises because of the flanges. Based on this, it can be concluded that proper insulation and additional heating jackets for the column walls are highly recommended for small-scale distillation columns in order to increase their thermal efficiency.\",\"PeriodicalId\":9755,\"journal\":{\"name\":\"ChemEngineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemEngineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/chemengineering7040068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemengineering7040068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了深入研究小型蒸馏塔中的分离过程,了解塔内的确切蒸汽负荷是非常重要的。然而,由于具有小直径的柱具有相对较高的表面积与体积比,热损失对流体动力学具有重大影响,因为它们会导致不必要的冷凝,从而导致内部流动的变化。本工作介绍了一种用于测量具有三个部分平行段的9.6m高蒸馏塔(多隔壁塔)中的热损失的程序。蒸发器由不锈钢制成,柱壁由双壁抽空镜面玻璃制成,此外,这些可以加热。发现蒸发器中损失了大量的热量。在整个柱高度上,即使使用外壁加热,也会额外损失约0.8kW。为了确定这一重大损失的主要原因,拍摄了热图像,表明问题主要是由法兰引起的。基于此,可以得出结论,对于小型蒸馏塔,强烈建议为塔壁提供适当的隔热和额外的加热夹套,以提高其热效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Investigation of Heat Losses in a Pilot-Scale Multiple Dividing Wall Distillation Column with Three Parallel Sections
For an in-depth investigation of the separation process in small-scale distillation columns, knowledge about the exact vapor load inside the column is highly important. However, since columns with small diameters have a comparatively high surface-to-volume ratio, heat losses have a significant impact on fluid dynamics, as they lead to unwanted condensation, and thus, to changes in the internal flows. This work presents a procedure used to measure heat losses in a 9.6 m high distillation column with three partially parallel segments (multiple dividing wall column). The evaporator is made of stainless steel, and the column walls are made of double-walled, evacuated, mirrored glass, and additionally, these can be heated. It is found that significant amounts of heat are lost in the evaporator. Throughout the column height, around 0.8 kW are additionally lost, even with external wall heating. To determine the main reason for this significant loss, thermal images are taken, indicating that the problem mainly arises because of the flanges. Based on this, it can be concluded that proper insulation and additional heating jackets for the column walls are highly recommended for small-scale distillation columns in order to increase their thermal efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemEngineering
ChemEngineering Engineering-Engineering (all)
CiteScore
4.00
自引率
4.00%
发文量
88
审稿时长
11 weeks
期刊最新文献
Catalysts Based on Iron Oxides for Wastewater Purification from Phenolic Compounds: Synthesis, Physicochemical Analysis, Determination of Catalytic Activity Effect of Inserting Baffles on the Solid Particle Segregation Behavior in Fluidized Bed Reactor: A Computational Study Force Field for Calculation of the Vapor-Liquid Phase Equilibrium of trans-Decalin Antisolvent Crystallization of Papain Ultrafiltration to Increase the Consistency of Fruit Pulps: The Role of Permeate Flux
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1