有机场效应晶体管传感集成CMOS读出电路的计算设计

IF 1.9 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Frontiers in electronics Pub Date : 2021-09-03 DOI:10.3389/felec.2021.725008
H. Taheri, Michael U. Ocheje, P. B. J. St. Onge, S. Rondeau‐Gagné, M. Mirhassani
{"title":"有机场效应晶体管传感集成CMOS读出电路的计算设计","authors":"H. Taheri, Michael U. Ocheje, P. B. J. St. Onge, S. Rondeau‐Gagné, M. Mirhassani","doi":"10.3389/felec.2021.725008","DOIUrl":null,"url":null,"abstract":"Organic field-effect transistors (OFETs) are at the forefront of next generation electronics. This class of devices is particularly promising due to the possibility of fabrication on mechanically compliant and conformable substrates, and potential manufacturing at large scale through solution deposition techniques. However, their integration in circuits, especially using stretchable materials, is still challenging. In this work, the design and implementation of a novel structure for an integrated CMOS readout circuitry is presented and its fundamentals of operation are provided. Critical for sensing applications, the readout circuitry described is highly linear. Moreover, as several sources of mismatch and error are present in CMOS and OFET devices, a calibration technique is used to cancel out all the mismatches, thus delivering a reliable output. The readout circuit is verified in TSMC 0.18 μm CMOS technology. The maximum total power consumption in the proposed readout circuit is less than 571 μW, while fully loaded calibration circuit consumes a power less than 153 μW, making it suitable for sensors applications. Based on previously reported high mobility and stretchable semiconducting polymers, this new design and readout circuitry is an important step toward a broader utilization of OFETs and the design of stretchable sensors.","PeriodicalId":73081,"journal":{"name":"Frontiers in electronics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational Design of an Integrated CMOS Readout Circuit for Sensing With Organic Field-Effect Transistors\",\"authors\":\"H. Taheri, Michael U. Ocheje, P. B. J. St. Onge, S. Rondeau‐Gagné, M. Mirhassani\",\"doi\":\"10.3389/felec.2021.725008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic field-effect transistors (OFETs) are at the forefront of next generation electronics. This class of devices is particularly promising due to the possibility of fabrication on mechanically compliant and conformable substrates, and potential manufacturing at large scale through solution deposition techniques. However, their integration in circuits, especially using stretchable materials, is still challenging. In this work, the design and implementation of a novel structure for an integrated CMOS readout circuitry is presented and its fundamentals of operation are provided. Critical for sensing applications, the readout circuitry described is highly linear. Moreover, as several sources of mismatch and error are present in CMOS and OFET devices, a calibration technique is used to cancel out all the mismatches, thus delivering a reliable output. The readout circuit is verified in TSMC 0.18 μm CMOS technology. The maximum total power consumption in the proposed readout circuit is less than 571 μW, while fully loaded calibration circuit consumes a power less than 153 μW, making it suitable for sensors applications. Based on previously reported high mobility and stretchable semiconducting polymers, this new design and readout circuitry is an important step toward a broader utilization of OFETs and the design of stretchable sensors.\",\"PeriodicalId\":73081,\"journal\":{\"name\":\"Frontiers in electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/felec.2021.725008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/felec.2021.725008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

有机场效应晶体管(ofet)处于下一代电子技术的前沿。这类器件特别有前途,因为它可以在机械上兼容和合格的衬底上制造,并且有可能通过溶液沉积技术大规模制造。然而,它们在电路中的集成,特别是使用可拉伸材料,仍然具有挑战性。在这项工作中,提出了一种集成CMOS读出电路的新结构的设计和实现,并提供了其操作基础。对于传感应用至关重要,所描述的读出电路是高度线性的。此外,由于CMOS和OFET器件中存在几种不匹配和误差源,因此使用校准技术来消除所有不匹配,从而提供可靠的输出。读出电路采用台积电0.18 μm CMOS工艺进行验证。所提出的读出电路的最大总功耗小于571 μW,而满载校准电路的最大功耗小于153 μW,适合传感器应用。基于先前报道的高迁移率和可拉伸的半导体聚合物,这种新的设计和读出电路是朝着更广泛地利用ofet和设计可拉伸传感器迈出的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Design of an Integrated CMOS Readout Circuit for Sensing With Organic Field-Effect Transistors
Organic field-effect transistors (OFETs) are at the forefront of next generation electronics. This class of devices is particularly promising due to the possibility of fabrication on mechanically compliant and conformable substrates, and potential manufacturing at large scale through solution deposition techniques. However, their integration in circuits, especially using stretchable materials, is still challenging. In this work, the design and implementation of a novel structure for an integrated CMOS readout circuitry is presented and its fundamentals of operation are provided. Critical for sensing applications, the readout circuitry described is highly linear. Moreover, as several sources of mismatch and error are present in CMOS and OFET devices, a calibration technique is used to cancel out all the mismatches, thus delivering a reliable output. The readout circuit is verified in TSMC 0.18 μm CMOS technology. The maximum total power consumption in the proposed readout circuit is less than 571 μW, while fully loaded calibration circuit consumes a power less than 153 μW, making it suitable for sensors applications. Based on previously reported high mobility and stretchable semiconducting polymers, this new design and readout circuitry is an important step toward a broader utilization of OFETs and the design of stretchable sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electromagnetic based flexible bioelectronics and its applications Impact of head-down-tilt body position on abdomen resistance for urinary bladder monitory applications Hardware acceleration of DNA pattern matching using analog resistive CAMs Hardware acceleration of DNA pattern matching using analog resistive CAMs Editorial: Electromagnetic compatibility design and power electronics technologies in modern power systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1