{"title":"基于功能脑网络的疾病诊断一致可扩展贝叶斯联合变量和图选择","authors":"Xuan Cao, Kyoungjae Lee","doi":"10.1214/23-ba1376","DOIUrl":null,"url":null,"abstract":"We consider the joint inference of regression coefficients and the inverse covariance matrix for covariates in high-dimensional probit regression, where the predictors are both relevant to the binary response and functionally related to one another. A hierarchical model with spike and slab priors over regression coefficients and the elements in the inverse covariance matrix is employed to simultaneously perform variable and graph selection. We establish joint selection consistency for both the variable and the underlying graph when the dimension of predictors is allowed to grow much larger than the sample size, which is the first theoretical result in the Bayesian literature. A scalable Gibbs sampler is derived that performs better in high-dimensional simulation studies compared with other state-of-art methods. We illustrate the practical impact and utilities of the proposed method via a functional MRI dataset, where both the regions of interest with altered functional activities and the underlying functional brain network are inferred and integrated together for stratifying disease risk.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consistent and Scalable Bayesian Joint Variable and Graph Selection for Disease Diagnosis Leveraging Functional Brain Network\",\"authors\":\"Xuan Cao, Kyoungjae Lee\",\"doi\":\"10.1214/23-ba1376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the joint inference of regression coefficients and the inverse covariance matrix for covariates in high-dimensional probit regression, where the predictors are both relevant to the binary response and functionally related to one another. A hierarchical model with spike and slab priors over regression coefficients and the elements in the inverse covariance matrix is employed to simultaneously perform variable and graph selection. We establish joint selection consistency for both the variable and the underlying graph when the dimension of predictors is allowed to grow much larger than the sample size, which is the first theoretical result in the Bayesian literature. A scalable Gibbs sampler is derived that performs better in high-dimensional simulation studies compared with other state-of-art methods. We illustrate the practical impact and utilities of the proposed method via a functional MRI dataset, where both the regions of interest with altered functional activities and the underlying functional brain network are inferred and integrated together for stratifying disease risk.\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2022-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ba1376\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ba1376","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Consistent and Scalable Bayesian Joint Variable and Graph Selection for Disease Diagnosis Leveraging Functional Brain Network
We consider the joint inference of regression coefficients and the inverse covariance matrix for covariates in high-dimensional probit regression, where the predictors are both relevant to the binary response and functionally related to one another. A hierarchical model with spike and slab priors over regression coefficients and the elements in the inverse covariance matrix is employed to simultaneously perform variable and graph selection. We establish joint selection consistency for both the variable and the underlying graph when the dimension of predictors is allowed to grow much larger than the sample size, which is the first theoretical result in the Bayesian literature. A scalable Gibbs sampler is derived that performs better in high-dimensional simulation studies compared with other state-of-art methods. We illustrate the practical impact and utilities of the proposed method via a functional MRI dataset, where both the regions of interest with altered functional activities and the underlying functional brain network are inferred and integrated together for stratifying disease risk.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.