风力发电机叶片涡致气动噪声的预测

Q4 Engineering Advances in Military Technology Pub Date : 2019-12-15 DOI:10.3849/aimt.01295
Bhargava, Maddula, Samala
{"title":"风力发电机叶片涡致气动噪声的预测","authors":"Bhargava, Maddula, Samala","doi":"10.3849/aimt.01295","DOIUrl":null,"url":null,"abstract":"An important aerodynamic noise source from lifting surface occurs from trailing edge of an aerofoil as found in wind turbine blades. In this work, semi-empirical method proposed by Brookes, Pope, Marcolini is applied to evaluate trailing edge bluntness vortex shedding noise source. For low Mach number flows (0.1884) and moderate to high chord Reynolds number, 4.73 × 10 – 3.35 × 10, change in sound power level was assessed for trailing edge thicknesses in terms of 0.1%, 0.5% and 1% chord lengths at wind speeds of 8 m/s, 10 m/s. For overall change of trailing edge thickness from 0.1% to 1% chord, an increase in noise levels up to 50 dB was found at low frequencies, while a decrease up to 30 dB was found between mid-band to high frequencies of spectra.","PeriodicalId":39125,"journal":{"name":"Advances in Military Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction of Vortex Induced Aerodynamic Noise from Wind Turbine Blades\",\"authors\":\"Bhargava, Maddula, Samala\",\"doi\":\"10.3849/aimt.01295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important aerodynamic noise source from lifting surface occurs from trailing edge of an aerofoil as found in wind turbine blades. In this work, semi-empirical method proposed by Brookes, Pope, Marcolini is applied to evaluate trailing edge bluntness vortex shedding noise source. For low Mach number flows (0.1884) and moderate to high chord Reynolds number, 4.73 × 10 – 3.35 × 10, change in sound power level was assessed for trailing edge thicknesses in terms of 0.1%, 0.5% and 1% chord lengths at wind speeds of 8 m/s, 10 m/s. For overall change of trailing edge thickness from 0.1% to 1% chord, an increase in noise levels up to 50 dB was found at low frequencies, while a decrease up to 30 dB was found between mid-band to high frequencies of spectra.\",\"PeriodicalId\":39125,\"journal\":{\"name\":\"Advances in Military Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Military Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3849/aimt.01295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Military Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3849/aimt.01295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

升力面是一个重要的气动噪声源,主要来自于风力机叶片的翼型后缘。本文采用Brookes, Pope, Marcolini提出的半经验方法对尾缘钝度涡落噪声源进行了评价。对于低马赫数流动(0.1884)和中高弦雷诺数(4.73 × 10 - 3.35 × 10),在风速为8 m/s、10 m/s时,以0.1%、0.5%和1%弦长计算尾缘厚度对声功率级的变化。尾缘厚度从0.1%到1%弦的整体变化,在低频处噪声水平增加了50 dB,而在中频段到高频处噪声水平下降了30 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Vortex Induced Aerodynamic Noise from Wind Turbine Blades
An important aerodynamic noise source from lifting surface occurs from trailing edge of an aerofoil as found in wind turbine blades. In this work, semi-empirical method proposed by Brookes, Pope, Marcolini is applied to evaluate trailing edge bluntness vortex shedding noise source. For low Mach number flows (0.1884) and moderate to high chord Reynolds number, 4.73 × 10 – 3.35 × 10, change in sound power level was assessed for trailing edge thicknesses in terms of 0.1%, 0.5% and 1% chord lengths at wind speeds of 8 m/s, 10 m/s. For overall change of trailing edge thickness from 0.1% to 1% chord, an increase in noise levels up to 50 dB was found at low frequencies, while a decrease up to 30 dB was found between mid-band to high frequencies of spectra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Military Technology
Advances in Military Technology Engineering-Civil and Structural Engineering
CiteScore
0.90
自引率
0.00%
发文量
11
审稿时长
12 weeks
期刊最新文献
Use of a Handheld Raman Spectrometer for Identification of Toxic Agents in Clandestine Laboratories Evaluating the Effectiveness of Assets Protection by Air Defense Means from Cruise Missiles Strikes Detection of Malicious Network Activity by Artificial Neural Network Estimation of Maximum Signal Strength for Satellite Tracking Based on the Extended Kalman Filter Rating of the mobility of Military Logistic Vehicles Used in the Polish Armed Forces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1