{"title":"使用SWAT对小型有测量和无测量的山区流域进行水文建模——以印度西高止山脉为例","authors":"K. Narula, S. Nischal","doi":"10.4236/jwarp.2021.137027","DOIUrl":null,"url":null,"abstract":"Mountainous forested watersheds are important hydrologic systems that are responsible for much of the water supply and run-of-the-river hy-dropower schemes in many parts of the world. In India, the Western Ghats are one of such important hydrologic systems located in southern peninsular region. Several of these watersheds are ungauged. The Soil and Water Assessment Tool (SWAT) has been used to model streamflows for two mountainous forested watersheds, namely, Gurupur (699 km2) (a gauged watershed) and Upper Payaswini (44.6 km2) (an ungauged wa-tershed). Model calibration and validation are performed using monthly and daily streamflow data for the gauged watershed. Sample flow values obtained over a limited period were used for validation of ungauged wa-tershed. Flow duration curves (FDCs) have been derived to assess per-centile flow distributions. Model performance is evaluated using Nash-Sutcliffe coefficient (ENS), percent bias (PBIAS), coefficient of de-termination (R2) and comparison of percentile flow values obtained from observed and simulated FDCs. Sensitivity analysis with Latin Hypercube One-factor-At-a-Time (LH-OAT) indicates five soil-land use related pa-rameters namely, soil available water capacity (SOL_AWC), soil evapora-tion compensation factor (ESCO), soil depth (SOL_Z) and layers, groundwater baseflow (ALPHA_BF), and curve number (CN2 (forest & agriculture)), to be sensitive for simulating both gauged and ungauged wet mountainous forested watersheds. Study shows that lateral flows from dynamic sub-surface zones in such watersheds contribute substan-tially to the total water yield.","PeriodicalId":56705,"journal":{"name":"水资源与保护(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hydrological Modelling of Small Gauged and Ungauged Mountainous Watersheds Using SWAT—A Case of Western Ghats in India\",\"authors\":\"K. Narula, S. Nischal\",\"doi\":\"10.4236/jwarp.2021.137027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mountainous forested watersheds are important hydrologic systems that are responsible for much of the water supply and run-of-the-river hy-dropower schemes in many parts of the world. In India, the Western Ghats are one of such important hydrologic systems located in southern peninsular region. Several of these watersheds are ungauged. The Soil and Water Assessment Tool (SWAT) has been used to model streamflows for two mountainous forested watersheds, namely, Gurupur (699 km2) (a gauged watershed) and Upper Payaswini (44.6 km2) (an ungauged wa-tershed). Model calibration and validation are performed using monthly and daily streamflow data for the gauged watershed. Sample flow values obtained over a limited period were used for validation of ungauged wa-tershed. Flow duration curves (FDCs) have been derived to assess per-centile flow distributions. Model performance is evaluated using Nash-Sutcliffe coefficient (ENS), percent bias (PBIAS), coefficient of de-termination (R2) and comparison of percentile flow values obtained from observed and simulated FDCs. Sensitivity analysis with Latin Hypercube One-factor-At-a-Time (LH-OAT) indicates five soil-land use related pa-rameters namely, soil available water capacity (SOL_AWC), soil evapora-tion compensation factor (ESCO), soil depth (SOL_Z) and layers, groundwater baseflow (ALPHA_BF), and curve number (CN2 (forest & agriculture)), to be sensitive for simulating both gauged and ungauged wet mountainous forested watersheds. Study shows that lateral flows from dynamic sub-surface zones in such watersheds contribute substan-tially to the total water yield.\",\"PeriodicalId\":56705,\"journal\":{\"name\":\"水资源与保护(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"水资源与保护(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.4236/jwarp.2021.137027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"水资源与保护(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/jwarp.2021.137027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrological Modelling of Small Gauged and Ungauged Mountainous Watersheds Using SWAT—A Case of Western Ghats in India
Mountainous forested watersheds are important hydrologic systems that are responsible for much of the water supply and run-of-the-river hy-dropower schemes in many parts of the world. In India, the Western Ghats are one of such important hydrologic systems located in southern peninsular region. Several of these watersheds are ungauged. The Soil and Water Assessment Tool (SWAT) has been used to model streamflows for two mountainous forested watersheds, namely, Gurupur (699 km2) (a gauged watershed) and Upper Payaswini (44.6 km2) (an ungauged wa-tershed). Model calibration and validation are performed using monthly and daily streamflow data for the gauged watershed. Sample flow values obtained over a limited period were used for validation of ungauged wa-tershed. Flow duration curves (FDCs) have been derived to assess per-centile flow distributions. Model performance is evaluated using Nash-Sutcliffe coefficient (ENS), percent bias (PBIAS), coefficient of de-termination (R2) and comparison of percentile flow values obtained from observed and simulated FDCs. Sensitivity analysis with Latin Hypercube One-factor-At-a-Time (LH-OAT) indicates five soil-land use related pa-rameters namely, soil available water capacity (SOL_AWC), soil evapora-tion compensation factor (ESCO), soil depth (SOL_Z) and layers, groundwater baseflow (ALPHA_BF), and curve number (CN2 (forest & agriculture)), to be sensitive for simulating both gauged and ungauged wet mountainous forested watersheds. Study shows that lateral flows from dynamic sub-surface zones in such watersheds contribute substan-tially to the total water yield.