{"title":"基于自适应维数搜索算法的机械稳定土墙经济高效设计","authors":"S. Azad, E. Akis","doi":"10.18400/tekderg.509468","DOIUrl":null,"url":null,"abstract":"Mechanically stabilized earth walls are among the most commonly used soil-retaining structural systems in the construction industry. This study addresses the optimum design problem of mechanically stabilized earth walls using a recently developed metaheuristic optimization algorithm, namely adaptive dimensional search. For a cost efficient design, different types of steel reinforcement as well as reinforced backfill soil are treated as discrete design variables. The performance of the adaptive dimensional search algorithm is investigated through cost optimization instances of mechanically stabilized earth walls under realistic design criteria specified by standard design codes. The numerical results demonstrate the efficiency and robustness of the adaptive dimensional search algorithm in minimum cost design of mechanically stabilized earth walls and further highlight the usefulness of design optimization in engineering practice.","PeriodicalId":49442,"journal":{"name":"Teknik Dergi","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cost Efficient Design of Mechanically Stabilized Earth Walls Using Adaptive Dimensional Search Algorithm\",\"authors\":\"S. Azad, E. Akis\",\"doi\":\"10.18400/tekderg.509468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanically stabilized earth walls are among the most commonly used soil-retaining structural systems in the construction industry. This study addresses the optimum design problem of mechanically stabilized earth walls using a recently developed metaheuristic optimization algorithm, namely adaptive dimensional search. For a cost efficient design, different types of steel reinforcement as well as reinforced backfill soil are treated as discrete design variables. The performance of the adaptive dimensional search algorithm is investigated through cost optimization instances of mechanically stabilized earth walls under realistic design criteria specified by standard design codes. The numerical results demonstrate the efficiency and robustness of the adaptive dimensional search algorithm in minimum cost design of mechanically stabilized earth walls and further highlight the usefulness of design optimization in engineering practice.\",\"PeriodicalId\":49442,\"journal\":{\"name\":\"Teknik Dergi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Teknik Dergi\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.18400/tekderg.509468\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Teknik Dergi","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18400/tekderg.509468","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Cost Efficient Design of Mechanically Stabilized Earth Walls Using Adaptive Dimensional Search Algorithm
Mechanically stabilized earth walls are among the most commonly used soil-retaining structural systems in the construction industry. This study addresses the optimum design problem of mechanically stabilized earth walls using a recently developed metaheuristic optimization algorithm, namely adaptive dimensional search. For a cost efficient design, different types of steel reinforcement as well as reinforced backfill soil are treated as discrete design variables. The performance of the adaptive dimensional search algorithm is investigated through cost optimization instances of mechanically stabilized earth walls under realistic design criteria specified by standard design codes. The numerical results demonstrate the efficiency and robustness of the adaptive dimensional search algorithm in minimum cost design of mechanically stabilized earth walls and further highlight the usefulness of design optimization in engineering practice.
期刊介绍:
The scope of Teknik Dergi is naturally confined with the subjects falling in the area of civil engineering. However, the area of civil engineering has recently been significantly enlarged, even the definition of civil engineering has somewhat changed.
Half a century ago, engineering was simply defined as “the art of using and converting the natural resources for the benefit of the mankind”. Today, the same objective is expected to be realised (i) by complying with the desire and expectations of the people concerned and (ii) without wasting the resources and within the sustainability principles. This change has required an interaction between engineering and social and administrative sciences. Some subjects at the borderline between civil engineering and social and administrative sciences have consequently been included in the area of civil engineering.
Teknik Dergi defines its scope in line with this understanding. However, it requires the papers falling in the borderline to have a significant component of civil engineering.