磨料流加工AlSiCp-MMC精加工特性的遗传实验研究

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering and Technology Innovation Pub Date : 2020-09-29 DOI:10.46604/IJETI.2020.4951
M. Yunus, M. S. Alsoufi
{"title":"磨料流加工AlSiCp-MMC精加工特性的遗传实验研究","authors":"M. Yunus, M. S. Alsoufi","doi":"10.46604/IJETI.2020.4951","DOIUrl":null,"url":null,"abstract":"Implementing non-conventional finishing methods in the aircraft industry by the abrasive flow machining (AFM) process depends on the production quality at optimal conditions. The optimal set of the process variables in metal-matrix-composite (MMC) for a varying reinforcement percentage removes the obstructions and errors in the AFM process. In order to achieve this objective, the resultant output functions of the overall process using every clustering level of variables in a model are configured by using genetic programming (GP). These functions forecast the data to vary the percent of silicon carbide particles (SiCp) particles without experimentation obtaining the output functions for material removing rates and surface roughness changes of Al-MMCs machined with the AFM process by using GP. The obtained genetic optimal global models are simulated and, the results show a higher degree of accuracy up to 99.97% as compared to the other modeling techniques.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Genetic Based Experimental Investigation on Finishing Characteristics of AlSiCp-MMC by Abrasive Flow Machining\",\"authors\":\"M. Yunus, M. S. Alsoufi\",\"doi\":\"10.46604/IJETI.2020.4951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementing non-conventional finishing methods in the aircraft industry by the abrasive flow machining (AFM) process depends on the production quality at optimal conditions. The optimal set of the process variables in metal-matrix-composite (MMC) for a varying reinforcement percentage removes the obstructions and errors in the AFM process. In order to achieve this objective, the resultant output functions of the overall process using every clustering level of variables in a model are configured by using genetic programming (GP). These functions forecast the data to vary the percent of silicon carbide particles (SiCp) particles without experimentation obtaining the output functions for material removing rates and surface roughness changes of Al-MMCs machined with the AFM process by using GP. The obtained genetic optimal global models are simulated and, the results show a higher degree of accuracy up to 99.97% as compared to the other modeling techniques.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/IJETI.2020.4951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/IJETI.2020.4951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

磨料流加工(AFM)工艺在飞机工业中实施非常规精加工方法取决于最佳条件下的生产质量。在金属基复合材料(MMC)中,针对不同增强率的工艺变量的最优集合消除了AFM过程中的障碍和误差。为了实现这一目标,使用遗传规划(GP)对模型中每个变量聚类级别的整个过程的结果输出函数进行配置。这些函数在没有实验的情况下预测了碳化硅颗粒(SiCp)颗粒百分比变化的数据,得到了用AFM工艺加工的al - mmc的材料去除率和表面粗糙度变化的输出函数。对所得到的遗传最优全局模型进行了仿真,结果表明,与其他建模技术相比,遗传最优全局模型的准确率高达99.97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic Based Experimental Investigation on Finishing Characteristics of AlSiCp-MMC by Abrasive Flow Machining
Implementing non-conventional finishing methods in the aircraft industry by the abrasive flow machining (AFM) process depends on the production quality at optimal conditions. The optimal set of the process variables in metal-matrix-composite (MMC) for a varying reinforcement percentage removes the obstructions and errors in the AFM process. In order to achieve this objective, the resultant output functions of the overall process using every clustering level of variables in a model are configured by using genetic programming (GP). These functions forecast the data to vary the percent of silicon carbide particles (SiCp) particles without experimentation obtaining the output functions for material removing rates and surface roughness changes of Al-MMCs machined with the AFM process by using GP. The obtained genetic optimal global models are simulated and, the results show a higher degree of accuracy up to 99.97% as compared to the other modeling techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
期刊最新文献
Domain Adaptation for Roasted Coffee Bean Quality Inspection Design of Deep Learning Acoustic Sonar Receiver with Temporal/ Spatial Underwater Channel Feature Extraction Capability Grid Operation and Inspection Resource Scheduling Based on an Adaptive Genetic Algorithm Closed-House Biofilter Design and Performance Evaluation for Mitigating Environmental Odor Disturbances Analysis of Drain-Induced Barrier Lowering for Gate-All-Around FET with Ferroelectric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1