tapajÓs地区土地利用和土地覆盖分类的目标分解技术属性和极化比分析

IF 0.5 Q3 Earth and Planetary Sciences Boletim De Ciencias Geodesicas Pub Date : 2019-04-18 DOI:10.1590/S1982-21702019000100002
N. C. Wiederkehr, F. F. Gama, J. C. Mura, João Roberto dos Santos, P. C. Bispo, E. Sano
{"title":"tapajÓs地区土地利用和土地覆盖分类的目标分解技术属性和极化比分析","authors":"N. C. Wiederkehr, F. F. Gama, J. C. Mura, João Roberto dos Santos, P. C. Bispo, E. Sano","doi":"10.1590/S1982-21702019000100002","DOIUrl":null,"url":null,"abstract":"Abstract This study aims to analyze the capability of the target decomposition techniques and the polarimetric ratios applied to the ALOS/PALSAR-2 satellite polarimetric images to discriminate the land use and land cover classes in the Tapajós National Forest region, Pará State. Three full polarimetric ALOS/PALSAR-2, level 1 single look complex scenes were selected to generate the coherence and the covariance matrices to derive the Cloude-Pottier and the Freeman-Durden target decomposition attributes. From the radiometrically calibrated PALSAR-2 images, we generated the backscatter coefficients, the cross polarized ratio (RC; HV/HH), the parallel polarized ratio (RP; VV/HH) and the Radar Forest Degradation Index (RFDI). The images resulting from these polarimetric attributes were processed by the Maximum Likelihood (MAXVER) classifier coupled with the Iterated Conditional Modes (ICM) contextual algorithm. We found that the classifications derived from the target decomposition attributes, mainly from the Cloude-Pottier technique, with a Kappa index of 0.75, presented a significant higher performance than those derived from the RC ratio, RP ratio, and RFDI.","PeriodicalId":55347,"journal":{"name":"Boletim De Ciencias Geodesicas","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1590/S1982-21702019000100002","citationCount":"8","resultStr":"{\"title\":\"ANALYSIS OF THE TARGET DECOMPOSITION TECHNIQUE ATTRIBUTES AND POLARIMETRIC RATIOS TO DISCRIMINATE LAND USE AND LAND COVER CLASSES OF THE TAPAJÓS REGION\",\"authors\":\"N. C. Wiederkehr, F. F. Gama, J. C. Mura, João Roberto dos Santos, P. C. Bispo, E. Sano\",\"doi\":\"10.1590/S1982-21702019000100002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study aims to analyze the capability of the target decomposition techniques and the polarimetric ratios applied to the ALOS/PALSAR-2 satellite polarimetric images to discriminate the land use and land cover classes in the Tapajós National Forest region, Pará State. Three full polarimetric ALOS/PALSAR-2, level 1 single look complex scenes were selected to generate the coherence and the covariance matrices to derive the Cloude-Pottier and the Freeman-Durden target decomposition attributes. From the radiometrically calibrated PALSAR-2 images, we generated the backscatter coefficients, the cross polarized ratio (RC; HV/HH), the parallel polarized ratio (RP; VV/HH) and the Radar Forest Degradation Index (RFDI). The images resulting from these polarimetric attributes were processed by the Maximum Likelihood (MAXVER) classifier coupled with the Iterated Conditional Modes (ICM) contextual algorithm. We found that the classifications derived from the target decomposition attributes, mainly from the Cloude-Pottier technique, with a Kappa index of 0.75, presented a significant higher performance than those derived from the RC ratio, RP ratio, and RFDI.\",\"PeriodicalId\":55347,\"journal\":{\"name\":\"Boletim De Ciencias Geodesicas\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1590/S1982-21702019000100002\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boletim De Ciencias Geodesicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/S1982-21702019000100002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletim De Ciencias Geodesicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/S1982-21702019000100002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 8

摘要

摘要本研究旨在分析目标分解技术和应用于ALOS/PALSAR-2卫星极化图像的极化率在帕拉州塔帕霍斯国家森林地区区分土地利用和土地覆盖类别的能力。选择三个全极化ALOS/PALSAR-2,1级单视复杂场景来生成相干和协方差矩阵,以导出Cloude Pottier和Freeman Durden目标分解属性。根据辐射校准的PALSAR-2图像,我们生成了后向散射系数、交叉极化比(RC;HV/HH)、平行极化比(RP;VV/HH)和雷达森林退化指数(RFDI)。由这些极化属性产生的图像由最大似然(MAXVER)分类器与迭代条件模式(ICM)上下文算法相结合进行处理。我们发现,从目标分解属性导出的分类,主要来自Cloude Pottier技术,Kappa指数为0.75,比从RC比率、RP比率和RFDI导出的分类表现出显著更高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANALYSIS OF THE TARGET DECOMPOSITION TECHNIQUE ATTRIBUTES AND POLARIMETRIC RATIOS TO DISCRIMINATE LAND USE AND LAND COVER CLASSES OF THE TAPAJÓS REGION
Abstract This study aims to analyze the capability of the target decomposition techniques and the polarimetric ratios applied to the ALOS/PALSAR-2 satellite polarimetric images to discriminate the land use and land cover classes in the Tapajós National Forest region, Pará State. Three full polarimetric ALOS/PALSAR-2, level 1 single look complex scenes were selected to generate the coherence and the covariance matrices to derive the Cloude-Pottier and the Freeman-Durden target decomposition attributes. From the radiometrically calibrated PALSAR-2 images, we generated the backscatter coefficients, the cross polarized ratio (RC; HV/HH), the parallel polarized ratio (RP; VV/HH) and the Radar Forest Degradation Index (RFDI). The images resulting from these polarimetric attributes were processed by the Maximum Likelihood (MAXVER) classifier coupled with the Iterated Conditional Modes (ICM) contextual algorithm. We found that the classifications derived from the target decomposition attributes, mainly from the Cloude-Pottier technique, with a Kappa index of 0.75, presented a significant higher performance than those derived from the RC ratio, RP ratio, and RFDI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boletim De Ciencias Geodesicas
Boletim De Ciencias Geodesicas Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
1.70
自引率
20.00%
发文量
10
审稿时长
3 months
期刊介绍: The Boletim de Ciências Geodésicas publishes original papers in the area of Geodetic Sciences and correlated ones (Geodesy, Photogrammetry and Remote Sensing, Cartography and Geographic Information Systems). Submitted articles must be unpublished, and should not be under consideration for publication in any other journal. Previous publication of the paper in conference proceedings would not violate the originality requirements. Articles must be written preferably in English language.
期刊最新文献
Spatial and seasonal dynamics of rainfall in subtropical Brazil Exploring spatio-temporal patterns of OpenStreetMap (OSM) contributions in heterogeneous urban areas Harmonizing income classes from 2000 and 2010 Brazilian censuses Study of the geometry influence of the support points in coordonates transformation: application from WGS84 to NS59 datum Speckle reduction for Sentinel-1A SAR images in the Semi-arid caatinga region, Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1