{"title":"基于混合策略的动态鲁棒粒子群优化算法","authors":"Jian Zeng, Xiaoyong Yu, Guoyan Yang, H. Gui","doi":"10.4018/ijsir.325006","DOIUrl":null,"url":null,"abstract":"Robust optimization over time can effectively solve the problem of frequent solution switching in dynamic environments. In order to improve the search performance of dynamic robust optimization algorithm, a dynamic robust particle swarm optimization algorithm based on hybrid strategy (HS-DRPSO) is proposed in this paper. Based on the particle swarm optimization, the HS-DRPSO combines differential evolution algorithm and brainstorms an optimization algorithm to improve the search ability. Moreover, a dynamic selection strategy is employed to realize the selection of different search methods in the proposed algorithm. Compared with the other two dynamic robust optimization algorithms on five dynamic standard test functions, the results show that the overall performance of the proposed algorithm is better than other comparison algorithms.","PeriodicalId":44265,"journal":{"name":"International Journal of Swarm Intelligence Research","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Robust Particle Swarm Optimization Algorithm Based on Hybrid Strategy\",\"authors\":\"Jian Zeng, Xiaoyong Yu, Guoyan Yang, H. Gui\",\"doi\":\"10.4018/ijsir.325006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust optimization over time can effectively solve the problem of frequent solution switching in dynamic environments. In order to improve the search performance of dynamic robust optimization algorithm, a dynamic robust particle swarm optimization algorithm based on hybrid strategy (HS-DRPSO) is proposed in this paper. Based on the particle swarm optimization, the HS-DRPSO combines differential evolution algorithm and brainstorms an optimization algorithm to improve the search ability. Moreover, a dynamic selection strategy is employed to realize the selection of different search methods in the proposed algorithm. Compared with the other two dynamic robust optimization algorithms on five dynamic standard test functions, the results show that the overall performance of the proposed algorithm is better than other comparison algorithms.\",\"PeriodicalId\":44265,\"journal\":{\"name\":\"International Journal of Swarm Intelligence Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Swarm Intelligence Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijsir.325006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Swarm Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsir.325006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dynamic Robust Particle Swarm Optimization Algorithm Based on Hybrid Strategy
Robust optimization over time can effectively solve the problem of frequent solution switching in dynamic environments. In order to improve the search performance of dynamic robust optimization algorithm, a dynamic robust particle swarm optimization algorithm based on hybrid strategy (HS-DRPSO) is proposed in this paper. Based on the particle swarm optimization, the HS-DRPSO combines differential evolution algorithm and brainstorms an optimization algorithm to improve the search ability. Moreover, a dynamic selection strategy is employed to realize the selection of different search methods in the proposed algorithm. Compared with the other two dynamic robust optimization algorithms on five dynamic standard test functions, the results show that the overall performance of the proposed algorithm is better than other comparison algorithms.
期刊介绍:
The mission of the International Journal of Swarm Intelligence Research (IJSIR) is to become a leading international and well-referred journal in swarm intelligence, nature-inspired optimization algorithms, and their applications. This journal publishes original and previously unpublished articles including research papers, survey papers, and application papers, to serve as a platform for facilitating and enhancing the information shared among researchers in swarm intelligence research areas ranging from algorithm developments to real-world applications.