高等植物中可逆的蛋白质磷酸化:关注状态转换

IF 4.9 Q1 BIOPHYSICS Biophysical reviews Pub Date : 2023-08-29 eCollection Date: 2023-10-01 DOI:10.1007/s12551-023-01116-y
D V Vetoshkina, M M Borisova-Mubarakshina
{"title":"高等植物中可逆的蛋白质磷酸化:关注状态转换","authors":"D V Vetoshkina, M M Borisova-Mubarakshina","doi":"10.1007/s12551-023-01116-y","DOIUrl":null,"url":null,"abstract":"<p><p>Reversible protein phosphorylation is one of the comprehensive mechanisms of cell metabolism regulation in eukaryotic organisms. The review describes the impact of the reversible protein phosphorylation on the regulation of growth and development as well as in adaptation pathways and signaling network in higher plant cells. The main part of the review is devoted to the role of the reversible phosphorylation of light-harvesting proteins of photosystem II and the state transition process in fine-tuning the photosynthetic activity of chloroplasts. A separate section of the review is dedicated to comparing the mechanisms and functional significance of state transitions in higher plants, algae, and cyanobacteria that allows the evolution aspects of state transitions meaning in various organisms to be discussed. Environmental factors affecting the state transitions are also considered. Additionally, we gain insight into the possible influence of STN7-dependent phosphorylation of the target proteins on the global network of reversible protein phosphorylation in plant cells as well as into the probable effect of the STN7 kinase inhibition on long-term acclimation pathways in higher plants.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643769/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reversible protein phosphorylation in higher plants: focus on state transitions.\",\"authors\":\"D V Vetoshkina, M M Borisova-Mubarakshina\",\"doi\":\"10.1007/s12551-023-01116-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reversible protein phosphorylation is one of the comprehensive mechanisms of cell metabolism regulation in eukaryotic organisms. The review describes the impact of the reversible protein phosphorylation on the regulation of growth and development as well as in adaptation pathways and signaling network in higher plant cells. The main part of the review is devoted to the role of the reversible phosphorylation of light-harvesting proteins of photosystem II and the state transition process in fine-tuning the photosynthetic activity of chloroplasts. A separate section of the review is dedicated to comparing the mechanisms and functional significance of state transitions in higher plants, algae, and cyanobacteria that allows the evolution aspects of state transitions meaning in various organisms to be discussed. Environmental factors affecting the state transitions are also considered. Additionally, we gain insight into the possible influence of STN7-dependent phosphorylation of the target proteins on the global network of reversible protein phosphorylation in plant cells as well as into the probable effect of the STN7 kinase inhibition on long-term acclimation pathways in higher plants.</p>\",\"PeriodicalId\":9094,\"journal\":{\"name\":\"Biophysical reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643769/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12551-023-01116-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-023-01116-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

可逆蛋白磷酸化是真核生物细胞代谢调控的综合机制之一。本文综述了可逆蛋白磷酸化对高等植物细胞生长发育调控以及适应途径和信号网络的影响。本文主要介绍了光系统II的捕光蛋白可逆磷酸化和状态转换过程在调控叶绿体光合活性中的作用。该评论的一个单独部分致力于比较高等植物、藻类和蓝藻中状态转换的机制和功能意义,从而允许讨论各种生物体中状态转换的进化方面的意义。还考虑了影响状态转换的环境因素。此外,我们还深入了解了STN7依赖性靶蛋白磷酸化对植物细胞中可逆性蛋白磷酸化全局网络的可能影响,以及STN7激酶抑制对高等植物长期驯化途径的可能影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reversible protein phosphorylation in higher plants: focus on state transitions.

Reversible protein phosphorylation is one of the comprehensive mechanisms of cell metabolism regulation in eukaryotic organisms. The review describes the impact of the reversible protein phosphorylation on the regulation of growth and development as well as in adaptation pathways and signaling network in higher plant cells. The main part of the review is devoted to the role of the reversible phosphorylation of light-harvesting proteins of photosystem II and the state transition process in fine-tuning the photosynthetic activity of chloroplasts. A separate section of the review is dedicated to comparing the mechanisms and functional significance of state transitions in higher plants, algae, and cyanobacteria that allows the evolution aspects of state transitions meaning in various organisms to be discussed. Environmental factors affecting the state transitions are also considered. Additionally, we gain insight into the possible influence of STN7-dependent phosphorylation of the target proteins on the global network of reversible protein phosphorylation in plant cells as well as into the probable effect of the STN7 kinase inhibition on long-term acclimation pathways in higher plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biophysical reviews
Biophysical reviews Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
8.90
自引率
0.00%
发文量
93
期刊介绍: Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation
期刊最新文献
Navigating the complexity of p53-DNA binding: implications for cancer therapy LAFeBS, alive, kicking, and growing: the story continues… Structural dynamics in chromatin unraveling by pioneer transcription factors Special issue: Multiscale simulations of DNA from electrons to nucleosomes. DNA simulation benchmarks revealed with the accumulation of high-resolution structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1