二维编织SiCf/SiC复合材料压缩载荷的原位CT表征

IF 1.9 4区 材料科学 Q3 Materials Science Science and Engineering of Composite Materials Pub Date : 2022-01-01 DOI:10.1515/secm-2022-0166
Wei-yao Guo, Yantao Gao, Lijuan Sun
{"title":"二维编织SiCf/SiC复合材料压缩载荷的原位CT表征","authors":"Wei-yao Guo, Yantao Gao, Lijuan Sun","doi":"10.1515/secm-2022-0166","DOIUrl":null,"url":null,"abstract":"Abstract SiC fiber-reinforced SiC matrix composites (SiCf/SiC) with 2D woven fabric as preform were tested under compression with in-situ X-ray computed tomography. The microstructure and damage evolution of the material under continuous loading levels were accurately revealed by image reconstruction of CT data. There were inhomogeneous pores in SiCf/SiC composite because of the un-uniform fiber distribution in the preform. The result also showed that 2D woven SiCf/SiC composite had obvious non-linear characteristics by its compressive load–displacement curve, and the damage modes included transverse matrix cracking, interlayer cracking, longitudinal matrix cracking, and fiber bundle fracture. Matrix cracking tended to occur near the pores or holes of the material, and the number of longitudinal cracks was relatively high compared to the number of transverse cracks.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"In-situ CT characterization of 2D woven SiCf/SiC composite loading under compression\",\"authors\":\"Wei-yao Guo, Yantao Gao, Lijuan Sun\",\"doi\":\"10.1515/secm-2022-0166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract SiC fiber-reinforced SiC matrix composites (SiCf/SiC) with 2D woven fabric as preform were tested under compression with in-situ X-ray computed tomography. The microstructure and damage evolution of the material under continuous loading levels were accurately revealed by image reconstruction of CT data. There were inhomogeneous pores in SiCf/SiC composite because of the un-uniform fiber distribution in the preform. The result also showed that 2D woven SiCf/SiC composite had obvious non-linear characteristics by its compressive load–displacement curve, and the damage modes included transverse matrix cracking, interlayer cracking, longitudinal matrix cracking, and fiber bundle fracture. Matrix cracking tended to occur near the pores or holes of the material, and the number of longitudinal cracks was relatively high compared to the number of transverse cracks.\",\"PeriodicalId\":21480,\"journal\":{\"name\":\"Science and Engineering of Composite Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Engineering of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/secm-2022-0166\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0166","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

摘要

摘要采用原位X射线计算机断层扫描技术对以二维机织物为预制体的SiC纤维增强SiC基复合材料(SiCf/SiC)进行了压缩试验。通过CT数据的图像重建,准确地揭示了材料在连续载荷水平下的微观结构和损伤演化。由于预制棒中纤维分布不均匀,SiCf/SiC复合材料中存在不均匀的孔隙。结果还表明,二维编织SiCf/SiC复合材料的压缩载荷-位移曲线具有明显的非线性特征,损伤模式包括横向基体开裂、层间开裂、纵向基体开裂和纤维束断裂。基体裂纹往往发生在材料的孔隙或孔附近,与横向裂纹的数量相比,纵向裂纹的数量相对较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-situ CT characterization of 2D woven SiCf/SiC composite loading under compression
Abstract SiC fiber-reinforced SiC matrix composites (SiCf/SiC) with 2D woven fabric as preform were tested under compression with in-situ X-ray computed tomography. The microstructure and damage evolution of the material under continuous loading levels were accurately revealed by image reconstruction of CT data. There were inhomogeneous pores in SiCf/SiC composite because of the un-uniform fiber distribution in the preform. The result also showed that 2D woven SiCf/SiC composite had obvious non-linear characteristics by its compressive load–displacement curve, and the damage modes included transverse matrix cracking, interlayer cracking, longitudinal matrix cracking, and fiber bundle fracture. Matrix cracking tended to occur near the pores or holes of the material, and the number of longitudinal cracks was relatively high compared to the number of transverse cracks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science and Engineering of Composite Materials
Science and Engineering of Composite Materials 工程技术-材料科学:复合
CiteScore
3.10
自引率
5.30%
发文量
0
审稿时长
4 months
期刊介绍: Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.
期刊最新文献
Calculation of specific surface area for tight rock characterization through high-pressure mercury intrusion Sustainable concrete with partial substitution of paper pulp ash: A review A novel 3D woven carbon fiber composite with super interlayer performance hybridized by CNT tape and copper wire simultaneously The assessment of color adjustment potentials for monoshade universal composites Optimizing bending strength of laminated bamboo using confined bamboo with softwoods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1