{"title":"混合Rossby重力波对苏门答腊西南海岸附近降水日周期的调制","authors":"B. Geng, M. Katsumata, K. Taniguchi","doi":"10.2151/jmsj.2020-026","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the impact of mixed Rossby-gravity waves (MRGWs) on the diurnal cycle of precipitation over the southwestern coastal area of Sumatra using data captured during a pilot field campaign of the Years of the Maritime Continent (YMC) project. The study focused on a 19-day period from 24 November to 12 December 2015, using data from intensive surface observations, radiosondes, and a C-band polarimetric radar (collected aboard the research vessel Mirai at 4°4′S, 101°54′E), as well as data from a global objective analysis. The results indicated a relationship between oscillations with periods of several days in the intensity of diurnal precipitation and the wind field. Wind oscillations were attributed to several westward-propagating MRGWs traversing the study site. Diurnal convection and precipitation over the land and ocean were enhanced (suppressed) when MRGW-induced offshore (onshore) wind perturbations dominated. Large-scale low-level convergence and upper-level divergence, stronger sea-breeze flow, and colder land-breeze flow were also observed with the intensification of MRGW-induced offshore wind perturbations. However, diurnal precipitation displayed a similar well-defined phase and propagation pattern over the land and ocean, coherent with the regular evolution of seaand land-breeze circulations, regardless of wind perturbations induced by MRGWs. The results suggest that local convergence induced by the land–sea contrast is mainly responsible for driving the diurnal cycle. Notwithstanding, MRGWs exert a significant impact on the amplitude of diurnal convection and precipitation by modulating the large-scale dynamic structure of the atmosphere and the intensity of local seaand land-breeze circulations.","PeriodicalId":17476,"journal":{"name":"Journal of the Meteorological Society of Japan","volume":"98 1","pages":"463-480"},"PeriodicalIF":2.4000,"publicationDate":"2020-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modulation of the Diurnal Cycle of Precipitation near the Southwestern Coast of Sumatra by Mixed Rossby-Gravity Waves\",\"authors\":\"B. Geng, M. Katsumata, K. Taniguchi\",\"doi\":\"10.2151/jmsj.2020-026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigated the impact of mixed Rossby-gravity waves (MRGWs) on the diurnal cycle of precipitation over the southwestern coastal area of Sumatra using data captured during a pilot field campaign of the Years of the Maritime Continent (YMC) project. The study focused on a 19-day period from 24 November to 12 December 2015, using data from intensive surface observations, radiosondes, and a C-band polarimetric radar (collected aboard the research vessel Mirai at 4°4′S, 101°54′E), as well as data from a global objective analysis. The results indicated a relationship between oscillations with periods of several days in the intensity of diurnal precipitation and the wind field. Wind oscillations were attributed to several westward-propagating MRGWs traversing the study site. Diurnal convection and precipitation over the land and ocean were enhanced (suppressed) when MRGW-induced offshore (onshore) wind perturbations dominated. Large-scale low-level convergence and upper-level divergence, stronger sea-breeze flow, and colder land-breeze flow were also observed with the intensification of MRGW-induced offshore wind perturbations. However, diurnal precipitation displayed a similar well-defined phase and propagation pattern over the land and ocean, coherent with the regular evolution of seaand land-breeze circulations, regardless of wind perturbations induced by MRGWs. The results suggest that local convergence induced by the land–sea contrast is mainly responsible for driving the diurnal cycle. Notwithstanding, MRGWs exert a significant impact on the amplitude of diurnal convection and precipitation by modulating the large-scale dynamic structure of the atmosphere and the intensity of local seaand land-breeze circulations.\",\"PeriodicalId\":17476,\"journal\":{\"name\":\"Journal of the Meteorological Society of Japan\",\"volume\":\"98 1\",\"pages\":\"463-480\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Meteorological Society of Japan\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2151/jmsj.2020-026\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Meteorological Society of Japan","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/jmsj.2020-026","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Modulation of the Diurnal Cycle of Precipitation near the Southwestern Coast of Sumatra by Mixed Rossby-Gravity Waves
In this study, we investigated the impact of mixed Rossby-gravity waves (MRGWs) on the diurnal cycle of precipitation over the southwestern coastal area of Sumatra using data captured during a pilot field campaign of the Years of the Maritime Continent (YMC) project. The study focused on a 19-day period from 24 November to 12 December 2015, using data from intensive surface observations, radiosondes, and a C-band polarimetric radar (collected aboard the research vessel Mirai at 4°4′S, 101°54′E), as well as data from a global objective analysis. The results indicated a relationship between oscillations with periods of several days in the intensity of diurnal precipitation and the wind field. Wind oscillations were attributed to several westward-propagating MRGWs traversing the study site. Diurnal convection and precipitation over the land and ocean were enhanced (suppressed) when MRGW-induced offshore (onshore) wind perturbations dominated. Large-scale low-level convergence and upper-level divergence, stronger sea-breeze flow, and colder land-breeze flow were also observed with the intensification of MRGW-induced offshore wind perturbations. However, diurnal precipitation displayed a similar well-defined phase and propagation pattern over the land and ocean, coherent with the regular evolution of seaand land-breeze circulations, regardless of wind perturbations induced by MRGWs. The results suggest that local convergence induced by the land–sea contrast is mainly responsible for driving the diurnal cycle. Notwithstanding, MRGWs exert a significant impact on the amplitude of diurnal convection and precipitation by modulating the large-scale dynamic structure of the atmosphere and the intensity of local seaand land-breeze circulations.
期刊介绍:
JMSJ publishes Articles and Notes and Correspondence that report novel scientific discoveries or technical developments that advance understanding in meteorology and related sciences. The journal’s broad scope includes meteorological observations, modeling, data assimilation, analyses, global and regional climate research, satellite remote sensing, chemistry and transport, and dynamic meteorology including geophysical fluid dynamics. In particular, JMSJ welcomes papers related to Asian monsoons, climate and mesoscale models, and numerical weather forecasts. Insightful and well-structured original Review Articles that describe the advances and challenges in meteorology and related sciences are also welcome.