{"title":"亚美尼亚EMEP站点湿沉降和氮、硫化合物大气浓度的长期趋势","authors":"Yekaterina Perikhanyan, Gayane Shahnazaryan, Arpine Gabrielyan","doi":"10.1007/s10874-020-09408-3","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the trends of gaseous nitric acid, nitrogen dioxide, sulfur dioxide, ammonia and nitrate, ammonium, sulfate ions in atmospheric air, and nitrate, ammonium and sulfate ions in wet deposition over 2008–2018 in Armenia. Atmospheric nitrogen and sulfur concentrations were monitored by data obtained from filter pack samplers and glass sinter filters at background monitoring station of Armenia (Amberd), which is designated as EMEP (European Monitoring and Evaluation Programme) station. Laboratory analyses were performed by ion chromatography system and UV spectrophotometer. MAKESENS programme was used for detecting and estimating trends in the time series of annual average values of atmospheric concentrations. Long term trends of atmospheric concentrations of nitrogen and sulfur compounds at the Amberd air quality monitoring station were calculated and discussed for the investigated decade. The trends significance levels for all parameters are calculated. It is identified that there are no significant trends for all explored paramenters, except reduced sulfur in aerosols. Possible emission and deposition changes of nitrogen and sulfur compounds in Armenia were explored in order to identify possible transboundary air pollution and its main sources. Deposition data was estimated by EMEP MSC-W model calculations. Investigation of transboundary fluxes of nitrogen and sulfur compounds displays main receptor areas and contributors. Analysis of seasonality in atmospheric pollutants shows strong seasonal behaviour of the measured parameters in wet deposition - higher concentrations during summertime compared with the wintertime. Atmospheric concentrations of nitrate and ammonium ions are lower during summertime compared with the wintertime, while ammonia has low concentrations during wintertime. Atmospheric nitric acid, sulfate ion, sulfur dioxide and nitrogen dioxide revel no significant seasonality.</p>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"77 3","pages":"101 - 116"},"PeriodicalIF":3.0000,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10874-020-09408-3","citationCount":"1","resultStr":"{\"title\":\"Long term trends of wet deposition and atmospheric concentrations of nitrogen and sulfur compounds at EMEP site in Armenia\",\"authors\":\"Yekaterina Perikhanyan, Gayane Shahnazaryan, Arpine Gabrielyan\",\"doi\":\"10.1007/s10874-020-09408-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents the trends of gaseous nitric acid, nitrogen dioxide, sulfur dioxide, ammonia and nitrate, ammonium, sulfate ions in atmospheric air, and nitrate, ammonium and sulfate ions in wet deposition over 2008–2018 in Armenia. Atmospheric nitrogen and sulfur concentrations were monitored by data obtained from filter pack samplers and glass sinter filters at background monitoring station of Armenia (Amberd), which is designated as EMEP (European Monitoring and Evaluation Programme) station. Laboratory analyses were performed by ion chromatography system and UV spectrophotometer. MAKESENS programme was used for detecting and estimating trends in the time series of annual average values of atmospheric concentrations. Long term trends of atmospheric concentrations of nitrogen and sulfur compounds at the Amberd air quality monitoring station were calculated and discussed for the investigated decade. The trends significance levels for all parameters are calculated. It is identified that there are no significant trends for all explored paramenters, except reduced sulfur in aerosols. Possible emission and deposition changes of nitrogen and sulfur compounds in Armenia were explored in order to identify possible transboundary air pollution and its main sources. Deposition data was estimated by EMEP MSC-W model calculations. Investigation of transboundary fluxes of nitrogen and sulfur compounds displays main receptor areas and contributors. Analysis of seasonality in atmospheric pollutants shows strong seasonal behaviour of the measured parameters in wet deposition - higher concentrations during summertime compared with the wintertime. Atmospheric concentrations of nitrate and ammonium ions are lower during summertime compared with the wintertime, while ammonia has low concentrations during wintertime. Atmospheric nitric acid, sulfate ion, sulfur dioxide and nitrogen dioxide revel no significant seasonality.</p>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"77 3\",\"pages\":\"101 - 116\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10874-020-09408-3\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-020-09408-3\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-020-09408-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Long term trends of wet deposition and atmospheric concentrations of nitrogen and sulfur compounds at EMEP site in Armenia
This paper presents the trends of gaseous nitric acid, nitrogen dioxide, sulfur dioxide, ammonia and nitrate, ammonium, sulfate ions in atmospheric air, and nitrate, ammonium and sulfate ions in wet deposition over 2008–2018 in Armenia. Atmospheric nitrogen and sulfur concentrations were monitored by data obtained from filter pack samplers and glass sinter filters at background monitoring station of Armenia (Amberd), which is designated as EMEP (European Monitoring and Evaluation Programme) station. Laboratory analyses were performed by ion chromatography system and UV spectrophotometer. MAKESENS programme was used for detecting and estimating trends in the time series of annual average values of atmospheric concentrations. Long term trends of atmospheric concentrations of nitrogen and sulfur compounds at the Amberd air quality monitoring station were calculated and discussed for the investigated decade. The trends significance levels for all parameters are calculated. It is identified that there are no significant trends for all explored paramenters, except reduced sulfur in aerosols. Possible emission and deposition changes of nitrogen and sulfur compounds in Armenia were explored in order to identify possible transboundary air pollution and its main sources. Deposition data was estimated by EMEP MSC-W model calculations. Investigation of transboundary fluxes of nitrogen and sulfur compounds displays main receptor areas and contributors. Analysis of seasonality in atmospheric pollutants shows strong seasonal behaviour of the measured parameters in wet deposition - higher concentrations during summertime compared with the wintertime. Atmospheric concentrations of nitrate and ammonium ions are lower during summertime compared with the wintertime, while ammonia has low concentrations during wintertime. Atmospheric nitric acid, sulfate ion, sulfur dioxide and nitrogen dioxide revel no significant seasonality.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.