经济订单数量,考虑了有关产品销量累积分布函数的已知分位数的附加信息

Z. Zenkova, W. Musoni
{"title":"经济订单数量,考虑了有关产品销量累积分布函数的已知分位数的附加信息","authors":"Z. Zenkova, W. Musoni","doi":"10.17323/2587-814X.2020.3.24.34","DOIUrl":null,"url":null,"abstract":"In modern logistics and supply chain management, the task of inventory management is paramount. The total costs of the enterprise and consequently, its profit, directly depend on the accuracy of calculating the volumes and terms of orders. In this work, the problem of increasing the accuracy of calculating the economic order quantity for a product was solved by involving additional information about the known quantile of a given level of the distribution function of the volume of product’s demand. The quantile information was used to recalculate the annual demand for the product, based on a modified estimator of the sales expectation for the period. The modified estimator is asymptotically unbiased, normal, and more accurate than the traditional sample mean in the sense of mean squared error. New formulas for calculating the economic order quantity and its confidence interval were presented and tested on real data on the monthly sales volumes of goods of a large retail store network over two years. It is shown that the classic way of mean calculation led to an underestimation of the volume of the economic order quantity, which in turn increased the risk of a shortage, and hence a drop in the quality of logistics services. The new calculation method also showed that the period between orders should be one day shorter. The work is practically significant; according to its results, recommendations are given to the enterprise.","PeriodicalId":41920,"journal":{"name":"Biznes Informatika-Business Informatics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The economic order quantity taking into account additional information about the known quantile of the cumulative distribution function of the product’s sales volume\",\"authors\":\"Z. Zenkova, W. Musoni\",\"doi\":\"10.17323/2587-814X.2020.3.24.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern logistics and supply chain management, the task of inventory management is paramount. The total costs of the enterprise and consequently, its profit, directly depend on the accuracy of calculating the volumes and terms of orders. In this work, the problem of increasing the accuracy of calculating the economic order quantity for a product was solved by involving additional information about the known quantile of a given level of the distribution function of the volume of product’s demand. The quantile information was used to recalculate the annual demand for the product, based on a modified estimator of the sales expectation for the period. The modified estimator is asymptotically unbiased, normal, and more accurate than the traditional sample mean in the sense of mean squared error. New formulas for calculating the economic order quantity and its confidence interval were presented and tested on real data on the monthly sales volumes of goods of a large retail store network over two years. It is shown that the classic way of mean calculation led to an underestimation of the volume of the economic order quantity, which in turn increased the risk of a shortage, and hence a drop in the quality of logistics services. The new calculation method also showed that the period between orders should be one day shorter. The work is practically significant; according to its results, recommendations are given to the enterprise.\",\"PeriodicalId\":41920,\"journal\":{\"name\":\"Biznes Informatika-Business Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biznes Informatika-Business Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17323/2587-814X.2020.3.24.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biznes Informatika-Business Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17323/2587-814X.2020.3.24.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

在现代物流和供应链管理中,库存管理是最重要的任务。企业的总成本以及利润直接取决于订单数量和条款计算的准确性。在这项工作中,通过涉及产品需求量分布函数的给定水平的已知分位数的附加信息,解决了提高计算产品经济订货量准确性的问题。分位数信息被用来重新计算产品的年需求,基于一个修正的估计期间的销售预期。改进的估计量是渐近无偏的,正态的,并且在均方误差的意义上比传统的样本均值更准确。提出了计算经济订货量及其置信区间的新公式,并在某大型零售网络两年来的月度商品销售量实际数据上进行了检验。结果表明,经典的平均计算方法导致了对经济订单数量的低估,这反过来增加了短缺的风险,从而降低了物流服务的质量。新的计算方法还表明,订单之间的间隔应该缩短一天。这项工作具有实际意义;根据研究结果,对企业提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The economic order quantity taking into account additional information about the known quantile of the cumulative distribution function of the product’s sales volume
In modern logistics and supply chain management, the task of inventory management is paramount. The total costs of the enterprise and consequently, its profit, directly depend on the accuracy of calculating the volumes and terms of orders. In this work, the problem of increasing the accuracy of calculating the economic order quantity for a product was solved by involving additional information about the known quantile of a given level of the distribution function of the volume of product’s demand. The quantile information was used to recalculate the annual demand for the product, based on a modified estimator of the sales expectation for the period. The modified estimator is asymptotically unbiased, normal, and more accurate than the traditional sample mean in the sense of mean squared error. New formulas for calculating the economic order quantity and its confidence interval were presented and tested on real data on the monthly sales volumes of goods of a large retail store network over two years. It is shown that the classic way of mean calculation led to an underestimation of the volume of the economic order quantity, which in turn increased the risk of a shortage, and hence a drop in the quality of logistics services. The new calculation method also showed that the period between orders should be one day shorter. The work is practically significant; according to its results, recommendations are given to the enterprise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
期刊最新文献
Modeling and optimization of strategies for making individual decisions in multi-agent socio-economic systems with the use of machine learning An intelligent method for generating a list of job profile requirements based on neural network language models using ESCO taxonomy and online job corpus Decision support technology for a seller on a marketplace in a competitive environment The present and future of the digital transformation of real estate: A systematic review of smart real estate A knowledge management system in the strategic development of universities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1