利用大交通数据进行时空碰撞预测的深度混合学习框架

Mohammad Tamim Kashifi , Mohammed Al-Turki , Abdul Wakil Sharify
{"title":"利用大交通数据进行时空碰撞预测的深度混合学习框架","authors":"Mohammad Tamim Kashifi ,&nbsp;Mohammed Al-Turki ,&nbsp;Abdul Wakil Sharify","doi":"10.1016/j.ijtst.2022.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid growth in data collection, storage, and transformation technologies offered new approaches that can be effectively utilized to improve traffic crash prediction. Considering the probability of traffic crash occurrence vary due to the spatiotemporal heterogeneity, this study proposes a state-of-the-art deep learning-based model that incorporates spatiotemporal information for the short-term crash prediction, named as Deep Spatiotemporal Hybrid Network (DSHN). The model integrates Convolutional Neural Network (CNN), Long Short-term Memory (LSTM), and Artificial Neural Network (ANN) to incorporate the synergistic power of individual models. The study utilizes different data sources such as big traffic data collected from Paris road network sensors, weather conditions, infrastructure, holidays, and crash data. The results indicated that the proposed DSHN model outperforms the baseline models with an Area Under Curve (AUC) of about 0.800, an accuracy of 0.757, and a false alarm rate of 0.217. In addition, the importance of each data type is evaluated to investigate their impacts on the prediction performance of models. The sensitivity analysis results indicate that the road sensor data that includes average speed, vehicle kilometer traveled (VKT), and weighted average occupancy has the highest impact on the prediction accuracy.</p></div>","PeriodicalId":52282,"journal":{"name":"International Journal of Transportation Science and Technology","volume":"12 3","pages":"Pages 793-808"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep hybrid learning framework for spatiotemporal crash prediction using big traffic data\",\"authors\":\"Mohammad Tamim Kashifi ,&nbsp;Mohammed Al-Turki ,&nbsp;Abdul Wakil Sharify\",\"doi\":\"10.1016/j.ijtst.2022.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid growth in data collection, storage, and transformation technologies offered new approaches that can be effectively utilized to improve traffic crash prediction. Considering the probability of traffic crash occurrence vary due to the spatiotemporal heterogeneity, this study proposes a state-of-the-art deep learning-based model that incorporates spatiotemporal information for the short-term crash prediction, named as Deep Spatiotemporal Hybrid Network (DSHN). The model integrates Convolutional Neural Network (CNN), Long Short-term Memory (LSTM), and Artificial Neural Network (ANN) to incorporate the synergistic power of individual models. The study utilizes different data sources such as big traffic data collected from Paris road network sensors, weather conditions, infrastructure, holidays, and crash data. The results indicated that the proposed DSHN model outperforms the baseline models with an Area Under Curve (AUC) of about 0.800, an accuracy of 0.757, and a false alarm rate of 0.217. In addition, the importance of each data type is evaluated to investigate their impacts on the prediction performance of models. The sensitivity analysis results indicate that the road sensor data that includes average speed, vehicle kilometer traveled (VKT), and weighted average occupancy has the highest impact on the prediction accuracy.</p></div>\",\"PeriodicalId\":52282,\"journal\":{\"name\":\"International Journal of Transportation Science and Technology\",\"volume\":\"12 3\",\"pages\":\"Pages 793-808\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Transportation Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2046043022000648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Transportation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2046043022000648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 4

摘要

数据收集、存储和转换技术的快速发展为有效改进交通事故预测提供了新的途径。考虑到交通事故发生概率的时空异质性,本研究提出了一种基于深度学习的融合时空信息的短期交通事故预测模型,称为深度时空混合网络(deep spatiotemporal Hybrid Network, DSHN)。该模型集成了卷积神经网络(CNN)、长短期记忆(LSTM)和人工神经网络(ANN),以整合各个模型的协同能力。该研究利用了从巴黎道路网络传感器收集的大型交通数据、天气状况、基础设施、假期和碰撞数据等不同的数据来源。结果表明,DSHN模型的曲线下面积(Area Under Curve, AUC)约为0.800,准确率为0.757,虚警率为0.217。此外,还评估了每种数据类型的重要性,以研究它们对模型预测性能的影响。灵敏度分析结果表明,平均车速、车辆行驶公里数(VKT)和加权平均占用率对预测精度影响最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep hybrid learning framework for spatiotemporal crash prediction using big traffic data

The rapid growth in data collection, storage, and transformation technologies offered new approaches that can be effectively utilized to improve traffic crash prediction. Considering the probability of traffic crash occurrence vary due to the spatiotemporal heterogeneity, this study proposes a state-of-the-art deep learning-based model that incorporates spatiotemporal information for the short-term crash prediction, named as Deep Spatiotemporal Hybrid Network (DSHN). The model integrates Convolutional Neural Network (CNN), Long Short-term Memory (LSTM), and Artificial Neural Network (ANN) to incorporate the synergistic power of individual models. The study utilizes different data sources such as big traffic data collected from Paris road network sensors, weather conditions, infrastructure, holidays, and crash data. The results indicated that the proposed DSHN model outperforms the baseline models with an Area Under Curve (AUC) of about 0.800, an accuracy of 0.757, and a false alarm rate of 0.217. In addition, the importance of each data type is evaluated to investigate their impacts on the prediction performance of models. The sensitivity analysis results indicate that the road sensor data that includes average speed, vehicle kilometer traveled (VKT), and weighted average occupancy has the highest impact on the prediction accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Transportation Science and Technology
International Journal of Transportation Science and Technology Engineering-Civil and Structural Engineering
CiteScore
7.20
自引率
0.00%
发文量
105
审稿时长
88 days
期刊最新文献
Comparing the vibrational behavior of e-kick scooters and e-bikes: Evidence from Italy Injury severity of drowsy drivers involved in single vehicle crashes: Accounting for temporal instability and unobserved heterogeneity Train rescheduling and platforming in large high-speed railway stations Characteristics and identification of risky driving behaviors in expressway tunnels based on behavior spectrum Performance evaluation of Bailey method used in asphalt mixtures containing natural river sands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1