Sourav Mukherjee, K. Khare, Saptarshi Chakraborty Department of Statistics, U. Florida, D. Biostatistics, State University of New York at Buffalo
{"title":"高维robit回归数据增广算法的收敛性","authors":"Sourav Mukherjee, K. Khare, Saptarshi Chakraborty Department of Statistics, U. Florida, D. Biostatistics, State University of New York at Buffalo","doi":"10.1214/22-ejs2098","DOIUrl":null,"url":null,"abstract":"Abstract: The logistic and probit link functions are the most common choices for regression models with a binary response. However, these choices are not robust to the presence of outliers/unexpected observations. The robit link function, which is equal to the inverse CDF of the Student’s t-distribution, provides a robust alternative to the probit and logistic link functions. A multivariate normal prior for the regression coefficients is the standard choice for Bayesian inference in robit regression models. The resulting posterior density is intractable and a Data Augmentation (DA) Markov chain is used to generate approximate samples from the desired posterior distribution. Establishing geometric ergodicity for this DA Markov chain is important as it provides theoretical guarantees for asymptotic validity of MCMC standard errors for desired posterior expectations/quantiles. Previous work [1] established geometric ergodicity of this robit DA Markov chain assuming (i) the sample size n dominates the number of predictors p, and (ii) an additional constraint which requires the sample size to be bounded above by a fixed constant which depends on the design matrix X. In particular, modern highdimensional settings where n < p are not considered. In this work, we show that the robit DA Markov chain is trace-class (i.e., the eigenvalues of the corresponding Markov operator are summable) for arbitrary choices of the sample size n, the number of predictors p, the design matrix X, and the prior mean and variance parameters. The trace-class property implies geometric ergodicity. Moreover, this property allows us to conclude that the sandwich robit chain (obtained by inserting an inexpensive extra step in between the two steps of the DA chain) is strictly better than the robit DA chain in an appropriate sense, and enables the use of recent methods to estimate the spectral gap of trace class DA Markov chains.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence properties of data augmentation algorithms for high-dimensional robit regression\",\"authors\":\"Sourav Mukherjee, K. Khare, Saptarshi Chakraborty Department of Statistics, U. Florida, D. Biostatistics, State University of New York at Buffalo\",\"doi\":\"10.1214/22-ejs2098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract: The logistic and probit link functions are the most common choices for regression models with a binary response. However, these choices are not robust to the presence of outliers/unexpected observations. The robit link function, which is equal to the inverse CDF of the Student’s t-distribution, provides a robust alternative to the probit and logistic link functions. A multivariate normal prior for the regression coefficients is the standard choice for Bayesian inference in robit regression models. The resulting posterior density is intractable and a Data Augmentation (DA) Markov chain is used to generate approximate samples from the desired posterior distribution. Establishing geometric ergodicity for this DA Markov chain is important as it provides theoretical guarantees for asymptotic validity of MCMC standard errors for desired posterior expectations/quantiles. Previous work [1] established geometric ergodicity of this robit DA Markov chain assuming (i) the sample size n dominates the number of predictors p, and (ii) an additional constraint which requires the sample size to be bounded above by a fixed constant which depends on the design matrix X. In particular, modern highdimensional settings where n < p are not considered. In this work, we show that the robit DA Markov chain is trace-class (i.e., the eigenvalues of the corresponding Markov operator are summable) for arbitrary choices of the sample size n, the number of predictors p, the design matrix X, and the prior mean and variance parameters. The trace-class property implies geometric ergodicity. Moreover, this property allows us to conclude that the sandwich robit chain (obtained by inserting an inexpensive extra step in between the two steps of the DA chain) is strictly better than the robit DA chain in an appropriate sense, and enables the use of recent methods to estimate the spectral gap of trace class DA Markov chains.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-ejs2098\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejs2098","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Convergence properties of data augmentation algorithms for high-dimensional robit regression
Abstract: The logistic and probit link functions are the most common choices for regression models with a binary response. However, these choices are not robust to the presence of outliers/unexpected observations. The robit link function, which is equal to the inverse CDF of the Student’s t-distribution, provides a robust alternative to the probit and logistic link functions. A multivariate normal prior for the regression coefficients is the standard choice for Bayesian inference in robit regression models. The resulting posterior density is intractable and a Data Augmentation (DA) Markov chain is used to generate approximate samples from the desired posterior distribution. Establishing geometric ergodicity for this DA Markov chain is important as it provides theoretical guarantees for asymptotic validity of MCMC standard errors for desired posterior expectations/quantiles. Previous work [1] established geometric ergodicity of this robit DA Markov chain assuming (i) the sample size n dominates the number of predictors p, and (ii) an additional constraint which requires the sample size to be bounded above by a fixed constant which depends on the design matrix X. In particular, modern highdimensional settings where n < p are not considered. In this work, we show that the robit DA Markov chain is trace-class (i.e., the eigenvalues of the corresponding Markov operator are summable) for arbitrary choices of the sample size n, the number of predictors p, the design matrix X, and the prior mean and variance parameters. The trace-class property implies geometric ergodicity. Moreover, this property allows us to conclude that the sandwich robit chain (obtained by inserting an inexpensive extra step in between the two steps of the DA chain) is strictly better than the robit DA chain in an appropriate sense, and enables the use of recent methods to estimate the spectral gap of trace class DA Markov chains.
期刊介绍:
The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.