生物和环境样品中铅(II)的流动注射系统新型阀设计

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY Indonesian Journal of Chemistry Pub Date : 2023-08-15 DOI:10.22146/ijc.83367
T. Jassim, Raisan Kadhim Taresh
{"title":"生物和环境样品中铅(II)的流动注射系统新型阀设计","authors":"T. Jassim, Raisan Kadhim Taresh","doi":"10.22146/ijc.83367","DOIUrl":null,"url":null,"abstract":"A strategy to design an injection valve for a streamlined flow injection technique is described as speed and low-cost materials available in the environment for the determination of Pb(II) ion using the organic reagent 4-((4-methoxyphenyl)diazenyl)benzene-1,3-diol at a wavelength of 498 nm. The scope of the study is to find the optimal conditions, including the flow rate of the carrier, the dispersion coefficient, the length of the reaction coil, and the calibration drawing. The results showed that the optimum length of the reaction coil is 20 cm, and the optimum flow rate is 9.1 mL/min, which is equivalent to the pumping rate of 70 F/min. The range of linearity of the study was revealed by a calibration curve of 0.5–27 mg/L, slope = 1.507, correlation coefficient = 0.9995, the limit of quantitative (LOQ) = 0.088 mg/L, and limit of detection (LOD) = 0.026 mg/L. The system under study has a characteristic efficiency. The dispersion coefficient was calculated for concentrations of 10–15 mg/L Pb(II) ion. Furthermore, the accuracy of the flow injection technique in the estimation process was studied and compared with the Flame Atomic Absorption Spectroscopy (FAAS) technique.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Design Valve in Flow Injection System for the Determination of Pb(II) in Biological and Environmental Samples\",\"authors\":\"T. Jassim, Raisan Kadhim Taresh\",\"doi\":\"10.22146/ijc.83367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A strategy to design an injection valve for a streamlined flow injection technique is described as speed and low-cost materials available in the environment for the determination of Pb(II) ion using the organic reagent 4-((4-methoxyphenyl)diazenyl)benzene-1,3-diol at a wavelength of 498 nm. The scope of the study is to find the optimal conditions, including the flow rate of the carrier, the dispersion coefficient, the length of the reaction coil, and the calibration drawing. The results showed that the optimum length of the reaction coil is 20 cm, and the optimum flow rate is 9.1 mL/min, which is equivalent to the pumping rate of 70 F/min. The range of linearity of the study was revealed by a calibration curve of 0.5–27 mg/L, slope = 1.507, correlation coefficient = 0.9995, the limit of quantitative (LOQ) = 0.088 mg/L, and limit of detection (LOD) = 0.026 mg/L. The system under study has a characteristic efficiency. The dispersion coefficient was calculated for concentrations of 10–15 mg/L Pb(II) ion. Furthermore, the accuracy of the flow injection technique in the estimation process was studied and compared with the Flame Atomic Absorption Spectroscopy (FAAS) technique.\",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.83367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.83367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

设计了一种用于流线型注射技术的注射阀的策略,描述了在环境中可用的快速和低成本的材料,用于在波长498 nm的波长下使用有机试剂4-((4-甲氧基苯基)二氮基)苯-1,3-二醇测定Pb(II)离子。研究的范围是寻找最优条件,包括载流子流量、色散系数、反应线圈长度、标定图等。结果表明,反应线圈的最佳长度为20 cm,最佳流量为9.1 mL/min,相当于泵送速率为70 F/min。线性范围为0.5 ~ 27 mg/L,斜率为1.507,相关系数为0.9995,定量限为0.088 mg/L,检出限为0.026 mg/L。所研究的系统具有典型的效率。计算了浓度为10 ~ 15 mg/L的Pb(II)离子的分散系数。此外,研究了流动注射技术在估算过程中的准确性,并与火焰原子吸收光谱(FAAS)技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Design Valve in Flow Injection System for the Determination of Pb(II) in Biological and Environmental Samples
A strategy to design an injection valve for a streamlined flow injection technique is described as speed and low-cost materials available in the environment for the determination of Pb(II) ion using the organic reagent 4-((4-methoxyphenyl)diazenyl)benzene-1,3-diol at a wavelength of 498 nm. The scope of the study is to find the optimal conditions, including the flow rate of the carrier, the dispersion coefficient, the length of the reaction coil, and the calibration drawing. The results showed that the optimum length of the reaction coil is 20 cm, and the optimum flow rate is 9.1 mL/min, which is equivalent to the pumping rate of 70 F/min. The range of linearity of the study was revealed by a calibration curve of 0.5–27 mg/L, slope = 1.507, correlation coefficient = 0.9995, the limit of quantitative (LOQ) = 0.088 mg/L, and limit of detection (LOD) = 0.026 mg/L. The system under study has a characteristic efficiency. The dispersion coefficient was calculated for concentrations of 10–15 mg/L Pb(II) ion. Furthermore, the accuracy of the flow injection technique in the estimation process was studied and compared with the Flame Atomic Absorption Spectroscopy (FAAS) technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indonesian Journal of Chemistry
Indonesian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
106
审稿时长
15 weeks
期刊介绍: Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.
期刊最新文献
Black Tea Waste as Corrosion Inhibitor for Carbon Steel in 0.5 M HCl Medium Synthesis, Thermal, DFT Calculations, HOMO-LUMO, MEP, and Molecular Docking Analysis of New Derivatives of Imidazolin-4-Ones Involvement of Fenton Reaction on Biodecolorization and Biodegradation of Methylene Blue Dye by Brown Rot Fungi Daedalea dickinsii Integration of Copperas and Moringa oleifera Seeds as Hybrid Coagulant for Turbidity and Ammonia Removal from Aquaculture Wastewater Synthesis and Characterization of Oligomer Bis(trans-2,3-dibromo-4-hydroxy-2-butenyl)terephthalate as a Green Corrosion Inhibitor on Mild Steel in 1 M H3PO4 Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1