A. I. Kondina, D. Rozhentsev, N. Shurov, N. Tkachev
{"title":"在深度共晶溶剂中通过热扩散涂层Me5Zn8(Me=Ag,Cu)的脱合金在银和铜表面上形成纳米多孔层","authors":"A. I. Kondina, D. Rozhentsev, N. Shurov, N. Tkachev","doi":"10.1080/02670844.2023.2203440","DOIUrl":null,"url":null,"abstract":"ABSTRACT Selective anodic dissolution of pre-galvanized surfaces was used to obtain nano-porous layers of approximately 10 microns thick on copper and silver specimens. To achieve single-phase homogeneous thermal diffusion layers of Cu5Zn8 and Ag5Zn8, we used a zinc plating process carried out in molten eutectic (KCl–NaCl–ZnCl2) at Т = 370°С. Dealloying of these coatings in a deep eutectic solvent (choline chloride/urea + 0.1 mol/l ZnCl2) at T = 133°C produced a typical bi-continuous structure of pores and ligaments (100 nm) on the surface of the silver and the copper. GRAPHICAL ABSTRACT","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"39 1","pages":"198 - 203"},"PeriodicalIF":2.4000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of a nanoporous layer on the surface of silver and copper by dealloying of thermal diffusion coatings Me5Zn8 (Me=Ag, Cu) in a deep eutectic solvent\",\"authors\":\"A. I. Kondina, D. Rozhentsev, N. Shurov, N. Tkachev\",\"doi\":\"10.1080/02670844.2023.2203440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Selective anodic dissolution of pre-galvanized surfaces was used to obtain nano-porous layers of approximately 10 microns thick on copper and silver specimens. To achieve single-phase homogeneous thermal diffusion layers of Cu5Zn8 and Ag5Zn8, we used a zinc plating process carried out in molten eutectic (KCl–NaCl–ZnCl2) at Т = 370°С. Dealloying of these coatings in a deep eutectic solvent (choline chloride/urea + 0.1 mol/l ZnCl2) at T = 133°C produced a typical bi-continuous structure of pores and ligaments (100 nm) on the surface of the silver and the copper. GRAPHICAL ABSTRACT\",\"PeriodicalId\":21995,\"journal\":{\"name\":\"Surface Engineering\",\"volume\":\"39 1\",\"pages\":\"198 - 203\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/02670844.2023.2203440\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2203440","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Formation of a nanoporous layer on the surface of silver and copper by dealloying of thermal diffusion coatings Me5Zn8 (Me=Ag, Cu) in a deep eutectic solvent
ABSTRACT Selective anodic dissolution of pre-galvanized surfaces was used to obtain nano-porous layers of approximately 10 microns thick on copper and silver specimens. To achieve single-phase homogeneous thermal diffusion layers of Cu5Zn8 and Ag5Zn8, we used a zinc plating process carried out in molten eutectic (KCl–NaCl–ZnCl2) at Т = 370°С. Dealloying of these coatings in a deep eutectic solvent (choline chloride/urea + 0.1 mol/l ZnCl2) at T = 133°C produced a typical bi-continuous structure of pores and ligaments (100 nm) on the surface of the silver and the copper. GRAPHICAL ABSTRACT
期刊介绍:
Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.