{"title":"用镍和镍钨催化剂催化燃料加氢液化合成液体燃料产品","authors":"E. N. Terekhova, O. B. Belskaya","doi":"10.1134/S2070050422020106","DOIUrl":null,"url":null,"abstract":"<p>Ni-containing catalysts are obtained on the basis of carbon mineral supports produced using sapropel and studied during the catalytic hydroliquefaction of sapropel. It is found that catalysts on supports obtained from mineral-type sapropel are more active than ones on supports based on organic-type sapropel, while bimetallic NiW catalysts exhibit higher activity than monometallic nickel catalysts, regardless of the nature of the support. It is shown that both the nature of the deposited metal and the support composition affect the conversion of the organic matter of sapropel and the composition of liquid products. The liquid products of hydroliquefaction contain mainly nitrogen- and oxygen-containing compounds. The maximum yield of hydrocarbons C<sub>5</sub>–C<sub>21</sub> is obtained for catalysts on supports obtained from mineral-type sapropel. Liquid products of hydroliquefaction of sapropels are similar in composition to biofuels from other renewable raw materials and can be included in existing schemes for further processing.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"14 2","pages":"171 - 180"},"PeriodicalIF":0.7000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Syntheis of Liquid Fuel Products by the Catalytic Hydroliquefaction of Sapropels Using Nickel and Nickel–Tungsten Catalysts\",\"authors\":\"E. N. Terekhova, O. B. Belskaya\",\"doi\":\"10.1134/S2070050422020106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ni-containing catalysts are obtained on the basis of carbon mineral supports produced using sapropel and studied during the catalytic hydroliquefaction of sapropel. It is found that catalysts on supports obtained from mineral-type sapropel are more active than ones on supports based on organic-type sapropel, while bimetallic NiW catalysts exhibit higher activity than monometallic nickel catalysts, regardless of the nature of the support. It is shown that both the nature of the deposited metal and the support composition affect the conversion of the organic matter of sapropel and the composition of liquid products. The liquid products of hydroliquefaction contain mainly nitrogen- and oxygen-containing compounds. The maximum yield of hydrocarbons C<sub>5</sub>–C<sub>21</sub> is obtained for catalysts on supports obtained from mineral-type sapropel. Liquid products of hydroliquefaction of sapropels are similar in composition to biofuels from other renewable raw materials and can be included in existing schemes for further processing.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"14 2\",\"pages\":\"171 - 180\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050422020106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050422020106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Syntheis of Liquid Fuel Products by the Catalytic Hydroliquefaction of Sapropels Using Nickel and Nickel–Tungsten Catalysts
Ni-containing catalysts are obtained on the basis of carbon mineral supports produced using sapropel and studied during the catalytic hydroliquefaction of sapropel. It is found that catalysts on supports obtained from mineral-type sapropel are more active than ones on supports based on organic-type sapropel, while bimetallic NiW catalysts exhibit higher activity than monometallic nickel catalysts, regardless of the nature of the support. It is shown that both the nature of the deposited metal and the support composition affect the conversion of the organic matter of sapropel and the composition of liquid products. The liquid products of hydroliquefaction contain mainly nitrogen- and oxygen-containing compounds. The maximum yield of hydrocarbons C5–C21 is obtained for catalysts on supports obtained from mineral-type sapropel. Liquid products of hydroliquefaction of sapropels are similar in composition to biofuels from other renewable raw materials and can be included in existing schemes for further processing.
期刊介绍:
The journal covers the following topical areas:
Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.