{"title":"基于改进双虚拟矢量调制的双三相永磁同步电机模型预测转矩控制","authors":"Zhujin Ren;Jinghua Ji;Hongyu Tang;Tao Tao;Linsen Huang;Wenxiang Zhao","doi":"10.23919/CJEE.2022.000041","DOIUrl":null,"url":null,"abstract":"Single voltage vectors applied in the conventional model predictive torque control (MPTC) for multiphase motors do not only suffer from serious torque and stator flux ripples but also cause the large harmonic current. To address the aforementioned challenges, an MPTC using a modified dual virtual vector modulation method is proposed to improve the operational performance of a dual three-phase permanent magnet synchronous motor. Virtual voltage vectors are synthesized as the candidate control set to restrain the harmonic current. A transformation method is introduced to consider both the stator flux and torque in the duty cycle modulation. The torque and stator flux ripples are simultaneously reduced by addressing the limitations of nonuniform units. Furthermore, the null voltage vector is then inserted to expand the modulation range and improve the steady-state performance. Moreover, the sawtooth carrier is adopted to address the challenge of the asymmetric switch sequence caused by the modified modulation. Finally, the experimental results are presented to verify the effectiveness and superiority of the proposed MPTC method.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"8 4","pages":"91-103"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/7873788/10018147/10018148.pdf","citationCount":"4","resultStr":"{\"title\":\"Model Predictive Torque Control for a Dual Three-phase PMSM Using Modified Dual Virtual Vector Modulation Method\",\"authors\":\"Zhujin Ren;Jinghua Ji;Hongyu Tang;Tao Tao;Linsen Huang;Wenxiang Zhao\",\"doi\":\"10.23919/CJEE.2022.000041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single voltage vectors applied in the conventional model predictive torque control (MPTC) for multiphase motors do not only suffer from serious torque and stator flux ripples but also cause the large harmonic current. To address the aforementioned challenges, an MPTC using a modified dual virtual vector modulation method is proposed to improve the operational performance of a dual three-phase permanent magnet synchronous motor. Virtual voltage vectors are synthesized as the candidate control set to restrain the harmonic current. A transformation method is introduced to consider both the stator flux and torque in the duty cycle modulation. The torque and stator flux ripples are simultaneously reduced by addressing the limitations of nonuniform units. Furthermore, the null voltage vector is then inserted to expand the modulation range and improve the steady-state performance. Moreover, the sawtooth carrier is adopted to address the challenge of the asymmetric switch sequence caused by the modified modulation. Finally, the experimental results are presented to verify the effectiveness and superiority of the proposed MPTC method.\",\"PeriodicalId\":36428,\"journal\":{\"name\":\"Chinese Journal of Electrical Engineering\",\"volume\":\"8 4\",\"pages\":\"91-103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/7873788/10018147/10018148.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electrical Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10018148/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10018148/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Model Predictive Torque Control for a Dual Three-phase PMSM Using Modified Dual Virtual Vector Modulation Method
Single voltage vectors applied in the conventional model predictive torque control (MPTC) for multiphase motors do not only suffer from serious torque and stator flux ripples but also cause the large harmonic current. To address the aforementioned challenges, an MPTC using a modified dual virtual vector modulation method is proposed to improve the operational performance of a dual three-phase permanent magnet synchronous motor. Virtual voltage vectors are synthesized as the candidate control set to restrain the harmonic current. A transformation method is introduced to consider both the stator flux and torque in the duty cycle modulation. The torque and stator flux ripples are simultaneously reduced by addressing the limitations of nonuniform units. Furthermore, the null voltage vector is then inserted to expand the modulation range and improve the steady-state performance. Moreover, the sawtooth carrier is adopted to address the challenge of the asymmetric switch sequence caused by the modified modulation. Finally, the experimental results are presented to verify the effectiveness and superiority of the proposed MPTC method.