{"title":"OFDM系统中改进的相位噪声补偿","authors":"L. Ge, Z. Wang, Li Qian, P. Wei, F. Gao, M. Li","doi":"10.13164/re.2022.0510","DOIUrl":null,"url":null,"abstract":". Phase noise (PN) consists of common phase error (CPE) and inter carrier interference (ICI). In an OFDM symbol, CPE has the same impact on each subcarrier, which is easy to be suppressed. However, ICI destroys the orthog-onality of subcarriers, which is difficult to be eliminated. Therefore, an additional method is needed to be performed in the OFDM receiver to compensate the ICI. The interpolation method is considered an effective way to eliminate the ICI caused by PN in the OFDM system. To enhance the accuracy of the PN estimation and compensation, we propose a linear method, LI-ICI-EE1 method based on LI-ICI-E1. Multiple interpolation slopes are first calculated by selecting multiple pairs of observation samples, then the slope with the maximal linear fitting degree based on the least square (LS) criterion is selected to improve the LI precision. Fur-thermore, to improve the estimation accuracy of PN in the LI-ICI-EE1, we propose a Shrinkage-based on LI-ICI-E1 method named SLI-EE1, which is implemented by adding an 𝑙 2 norm penalty term to the error function. At last, to optimize the low accuracy of LI-ICI-EE1 and SLI-EE1 when the PN compensation problem is a high-order problem, we propose a non-linear method Shrinkage-based Third-order Lagrange method named STL. Simulation results show that the improved methods have better BER performance.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Phase Noise Compensation in OFDM Systems\",\"authors\":\"L. Ge, Z. Wang, Li Qian, P. Wei, F. Gao, M. Li\",\"doi\":\"10.13164/re.2022.0510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Phase noise (PN) consists of common phase error (CPE) and inter carrier interference (ICI). In an OFDM symbol, CPE has the same impact on each subcarrier, which is easy to be suppressed. However, ICI destroys the orthog-onality of subcarriers, which is difficult to be eliminated. Therefore, an additional method is needed to be performed in the OFDM receiver to compensate the ICI. The interpolation method is considered an effective way to eliminate the ICI caused by PN in the OFDM system. To enhance the accuracy of the PN estimation and compensation, we propose a linear method, LI-ICI-EE1 method based on LI-ICI-E1. Multiple interpolation slopes are first calculated by selecting multiple pairs of observation samples, then the slope with the maximal linear fitting degree based on the least square (LS) criterion is selected to improve the LI precision. Fur-thermore, to improve the estimation accuracy of PN in the LI-ICI-EE1, we propose a Shrinkage-based on LI-ICI-E1 method named SLI-EE1, which is implemented by adding an 𝑙 2 norm penalty term to the error function. At last, to optimize the low accuracy of LI-ICI-EE1 and SLI-EE1 when the PN compensation problem is a high-order problem, we propose a non-linear method Shrinkage-based Third-order Lagrange method named STL. Simulation results show that the improved methods have better BER performance.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2022.0510\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2022.0510","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
. Phase noise (PN) consists of common phase error (CPE) and inter carrier interference (ICI). In an OFDM symbol, CPE has the same impact on each subcarrier, which is easy to be suppressed. However, ICI destroys the orthog-onality of subcarriers, which is difficult to be eliminated. Therefore, an additional method is needed to be performed in the OFDM receiver to compensate the ICI. The interpolation method is considered an effective way to eliminate the ICI caused by PN in the OFDM system. To enhance the accuracy of the PN estimation and compensation, we propose a linear method, LI-ICI-EE1 method based on LI-ICI-E1. Multiple interpolation slopes are first calculated by selecting multiple pairs of observation samples, then the slope with the maximal linear fitting degree based on the least square (LS) criterion is selected to improve the LI precision. Fur-thermore, to improve the estimation accuracy of PN in the LI-ICI-EE1, we propose a Shrinkage-based on LI-ICI-E1 method named SLI-EE1, which is implemented by adding an 𝑙 2 norm penalty term to the error function. At last, to optimize the low accuracy of LI-ICI-EE1 and SLI-EE1 when the PN compensation problem is a high-order problem, we propose a non-linear method Shrinkage-based Third-order Lagrange method named STL. Simulation results show that the improved methods have better BER performance.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.