{"title":"吸附层-液界面滑移时微纳多孔过滤膜内流动特性的多尺度计算结果","authors":"Jian Li, Yongbin Zhang","doi":"10.12989/MWT.2021.12.3.107","DOIUrl":null,"url":null,"abstract":"The paper presents the multiscale calculation results for the multiscale flow in micro/nano porous filtration membranes where the adsorbed layer effect is involved, by considering the adsorbed layer-fluid interfacial slippage. The analysis consists of the molecular scale analysis for the adsorbed layer flow and the continuum analysis for the intermediate fluid flow. The calculation results are respectively compared with the classical flow theory calculations and those based on the solid layer assumption. The adsorbed layer flow rate is also compared with the flow rate of the intermediate continuum fluid. It is shown that for a strong fluid-pore wall interaction or for a large adsorbed layer-fluid interfacial slippage the adsorbed layer can be treated as a solid layer; otherwise it should be treated as a flowing layer. The large interfacial slippage results in the flow rate through the pore far greater than the classical Hagen-Poiseuille equation calculation; it largely propels the flow of the intermediate continuum fluid and makes the adsorbed layer flow negligible particularly for the medium and strong fluid-pore wall interactions. The increasing fluid-pore wall interaction strength significantly reduces the flow rate through the pore.","PeriodicalId":18416,"journal":{"name":"Membrane Water Treatment","volume":"12 1","pages":"107"},"PeriodicalIF":0.8000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale calculation results of the flow behavior in micro/nano porous filtration membrane with the adsorbed layer-fluid interfacial slippage\",\"authors\":\"Jian Li, Yongbin Zhang\",\"doi\":\"10.12989/MWT.2021.12.3.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the multiscale calculation results for the multiscale flow in micro/nano porous filtration membranes where the adsorbed layer effect is involved, by considering the adsorbed layer-fluid interfacial slippage. The analysis consists of the molecular scale analysis for the adsorbed layer flow and the continuum analysis for the intermediate fluid flow. The calculation results are respectively compared with the classical flow theory calculations and those based on the solid layer assumption. The adsorbed layer flow rate is also compared with the flow rate of the intermediate continuum fluid. It is shown that for a strong fluid-pore wall interaction or for a large adsorbed layer-fluid interfacial slippage the adsorbed layer can be treated as a solid layer; otherwise it should be treated as a flowing layer. The large interfacial slippage results in the flow rate through the pore far greater than the classical Hagen-Poiseuille equation calculation; it largely propels the flow of the intermediate continuum fluid and makes the adsorbed layer flow negligible particularly for the medium and strong fluid-pore wall interactions. The increasing fluid-pore wall interaction strength significantly reduces the flow rate through the pore.\",\"PeriodicalId\":18416,\"journal\":{\"name\":\"Membrane Water Treatment\",\"volume\":\"12 1\",\"pages\":\"107\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membrane Water Treatment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/MWT.2021.12.3.107\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membrane Water Treatment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/MWT.2021.12.3.107","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Multiscale calculation results of the flow behavior in micro/nano porous filtration membrane with the adsorbed layer-fluid interfacial slippage
The paper presents the multiscale calculation results for the multiscale flow in micro/nano porous filtration membranes where the adsorbed layer effect is involved, by considering the adsorbed layer-fluid interfacial slippage. The analysis consists of the molecular scale analysis for the adsorbed layer flow and the continuum analysis for the intermediate fluid flow. The calculation results are respectively compared with the classical flow theory calculations and those based on the solid layer assumption. The adsorbed layer flow rate is also compared with the flow rate of the intermediate continuum fluid. It is shown that for a strong fluid-pore wall interaction or for a large adsorbed layer-fluid interfacial slippage the adsorbed layer can be treated as a solid layer; otherwise it should be treated as a flowing layer. The large interfacial slippage results in the flow rate through the pore far greater than the classical Hagen-Poiseuille equation calculation; it largely propels the flow of the intermediate continuum fluid and makes the adsorbed layer flow negligible particularly for the medium and strong fluid-pore wall interactions. The increasing fluid-pore wall interaction strength significantly reduces the flow rate through the pore.
期刊介绍:
The Membrane and Water Treatment(MWT), An International Journal, aims at opening an access to the valuable source of technical information and providing an excellent publication channel for the global community of researchers in Membrane and Water Treatment related area. Specific emphasis of the journal may include but not limited to; the engineering and scientific aspects of understanding the basic mechanisms and applying membranes for water and waste water treatment, such as transport phenomena, surface characteristics, fouling, scaling, desalination, membrane bioreactors, water reuse, and system optimization.