{"title":"块稀疏恢复和秩最小化的加权lp−l1最小化方法","authors":"Yun Cai","doi":"10.1142/s0219530520500086","DOIUrl":null,"url":null,"abstract":"This paper considers block sparse recovery and rank minimization problems from incomplete linear measurements. We study the weighted [Formula: see text] [Formula: see text] norms as a nonconvex metric for recovering block sparse signals and low-rank matrices. Based on the block [Formula: see text]-restricted isometry property (abbreviated as block [Formula: see text]-RIP) and matrix [Formula: see text]-RIP, we prove that the weighted [Formula: see text] minimization can guarantee the exact recovery for block sparse signals and low-rank matrices. We also give the stable recovery results for approximately block sparse signals and approximately low-rank matrices in noisy measurements cases. Our results give the theoretical support for block sparse recovery and rank minimization problems.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219530520500086","citationCount":"7","resultStr":"{\"title\":\"Weighted lp − l1 minimization methods for block sparse recovery and rank minimization\",\"authors\":\"Yun Cai\",\"doi\":\"10.1142/s0219530520500086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers block sparse recovery and rank minimization problems from incomplete linear measurements. We study the weighted [Formula: see text] [Formula: see text] norms as a nonconvex metric for recovering block sparse signals and low-rank matrices. Based on the block [Formula: see text]-restricted isometry property (abbreviated as block [Formula: see text]-RIP) and matrix [Formula: see text]-RIP, we prove that the weighted [Formula: see text] minimization can guarantee the exact recovery for block sparse signals and low-rank matrices. We also give the stable recovery results for approximately block sparse signals and approximately low-rank matrices in noisy measurements cases. Our results give the theoretical support for block sparse recovery and rank minimization problems.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s0219530520500086\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530520500086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530520500086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Weighted lp − l1 minimization methods for block sparse recovery and rank minimization
This paper considers block sparse recovery and rank minimization problems from incomplete linear measurements. We study the weighted [Formula: see text] [Formula: see text] norms as a nonconvex metric for recovering block sparse signals and low-rank matrices. Based on the block [Formula: see text]-restricted isometry property (abbreviated as block [Formula: see text]-RIP) and matrix [Formula: see text]-RIP, we prove that the weighted [Formula: see text] minimization can guarantee the exact recovery for block sparse signals and low-rank matrices. We also give the stable recovery results for approximately block sparse signals and approximately low-rank matrices in noisy measurements cases. Our results give the theoretical support for block sparse recovery and rank minimization problems.