{"title":"基于MCM-22沸石的1-己烯低聚制备喷气燃料系统","authors":"Hao Yang, Qi Zuo, Xin Ning, Jiajun Zheng, Wenlin Li, Ruifeng Li","doi":"10.1016/j.crcon.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>The oligomerization of light olefins is an alternative for generating clean liquid fuels. In this study, the MCM-22 zeolite featuring a partially disordered layered structure with framework combined 10 membered ring (10 MR) was discussed for 1-hexene oligomerization. MCM-22 and Y zeolite were compared to investigate the influences of the framework and acidity strength on the activity and yield in the 1-hexene oligomerization. The results indicated that the MCM-22 zeolite was an efficient catalyst for oligomerization compared to Y zeolite. The MCM-22 zeolite was characterized in detail by NMR, Py-FTIR, and TG analyses. The catalytic performance and deactivation properties of MCM-22 zeolite in the oligomerization reaction of 1-hexene were investigated. Structure–activity relationships were established through the kinetic study. Although the density of strong acid sites was essential for the oligomerization of 1-hexene, the presence of low pressure was also necessary for the formation of dimers. Thus, MCM-22 zeolite demonstrates a substantial improvement in initial conversion and catalyst lifespan for 1-hexene oligomerization.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 1","pages":"Article 100189"},"PeriodicalIF":6.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000510/pdfft?md5=63dfc79d8577054fd23f9a43de670b3f&pid=1-s2.0-S2588913323000510-main.pdf","citationCount":"0","resultStr":"{\"title\":\"MCM-22 zeolite-based system to produce jet fuel from the 1-hexene oligomerization\",\"authors\":\"Hao Yang, Qi Zuo, Xin Ning, Jiajun Zheng, Wenlin Li, Ruifeng Li\",\"doi\":\"10.1016/j.crcon.2023.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The oligomerization of light olefins is an alternative for generating clean liquid fuels. In this study, the MCM-22 zeolite featuring a partially disordered layered structure with framework combined 10 membered ring (10 MR) was discussed for 1-hexene oligomerization. MCM-22 and Y zeolite were compared to investigate the influences of the framework and acidity strength on the activity and yield in the 1-hexene oligomerization. The results indicated that the MCM-22 zeolite was an efficient catalyst for oligomerization compared to Y zeolite. The MCM-22 zeolite was characterized in detail by NMR, Py-FTIR, and TG analyses. The catalytic performance and deactivation properties of MCM-22 zeolite in the oligomerization reaction of 1-hexene were investigated. Structure–activity relationships were established through the kinetic study. Although the density of strong acid sites was essential for the oligomerization of 1-hexene, the presence of low pressure was also necessary for the formation of dimers. Thus, MCM-22 zeolite demonstrates a substantial improvement in initial conversion and catalyst lifespan for 1-hexene oligomerization.</p></div>\",\"PeriodicalId\":52958,\"journal\":{\"name\":\"Carbon Resources Conversion\",\"volume\":\"7 1\",\"pages\":\"Article 100189\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588913323000510/pdfft?md5=63dfc79d8577054fd23f9a43de670b3f&pid=1-s2.0-S2588913323000510-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Resources Conversion\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588913323000510\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913323000510","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
MCM-22 zeolite-based system to produce jet fuel from the 1-hexene oligomerization
The oligomerization of light olefins is an alternative for generating clean liquid fuels. In this study, the MCM-22 zeolite featuring a partially disordered layered structure with framework combined 10 membered ring (10 MR) was discussed for 1-hexene oligomerization. MCM-22 and Y zeolite were compared to investigate the influences of the framework and acidity strength on the activity and yield in the 1-hexene oligomerization. The results indicated that the MCM-22 zeolite was an efficient catalyst for oligomerization compared to Y zeolite. The MCM-22 zeolite was characterized in detail by NMR, Py-FTIR, and TG analyses. The catalytic performance and deactivation properties of MCM-22 zeolite in the oligomerization reaction of 1-hexene were investigated. Structure–activity relationships were established through the kinetic study. Although the density of strong acid sites was essential for the oligomerization of 1-hexene, the presence of low pressure was also necessary for the formation of dimers. Thus, MCM-22 zeolite demonstrates a substantial improvement in initial conversion and catalyst lifespan for 1-hexene oligomerization.
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.