咪唑基双离子液体萃取-萃取-精馏高效分离苯+环己烷混合物

IF 9.1 Q1 ENGINEERING, CHEMICAL Green Chemical Engineering Pub Date : 2023-09-01 DOI:10.1016/j.gce.2022.07.003
Wanxiang Zhang , Wuji Zhao , Shuhang Ren , Yucui Hou , Weize Wu
{"title":"咪唑基双离子液体萃取-萃取-精馏高效分离苯+环己烷混合物","authors":"Wanxiang Zhang ,&nbsp;Wuji Zhao ,&nbsp;Shuhang Ren ,&nbsp;Yucui Hou ,&nbsp;Weize Wu","doi":"10.1016/j.gce.2022.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>Benzene (BEN) and cyclohexane (CYH), which have very close boiling points and a binary azeotrope, are the most difficult binary components in the separation of aromatic and non-aromatic hydrocarbons. This study further explored the separation mechanism and industrial application prospects of BEN ​+ ​CYH mixtures separated by a dicationic ionic liquid (DIL) [C<sub>5</sub>(MIM)<sub>2</sub>][NTf<sub>2</sub>]<sub>2</sub> based on experimental research. The calculation results of the Conductor-like Screening model Segment Activity Coefficient (COSMO-SAC) model show that selectivity and solvent capacity of the DIL are significantly improved. The effects of different anions and cations on the microstructure distribution and diffusion behavior of BEN ​+ ​CYH system were investigated by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. The results indicate that the anion [NTf<sub>2</sub>]<sup>−</sup> has low polarity, uniform charge distribution, and a dual role of hydrogen bonding and π-π bonding, and the cation [C<sub>5</sub>(MIM)<sub>2</sub>]<sup>2+</sup> has stronger interaction with BEN and higher selectivity than conventional cations. The liquid-liquid extraction and extractive distillation (LLE-ED) process using an optimized 65 mol/mol DIL ​+ ​35 mol/mol H<sub>2</sub>O mixed solution as the extractant was proposed, which solved the problem of low product purity in the LLE process and high energy consumption in the ED process. Under the best operating conditions, the purity of CYH product was 99.9%, the purity of BEN product was 99.6%, the recovery rate of BEN reached 99.9%, and the recovery rate of DIL reached 99.9%. The heat-integrated LLE-ED process reduced total annual cost by 21.6%, and reduced CO<sub>2</sub> emissions by 48.0%, which has broad industrial application prospects.</p></div>","PeriodicalId":66474,"journal":{"name":"Green Chemical Engineering","volume":"4 3","pages":"Pages 312-323"},"PeriodicalIF":9.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Highly efficient separation of benzene + cyclohexane mixtures by extraction combined extractive distillation using imidazolium-based dicationic ionic liquids\",\"authors\":\"Wanxiang Zhang ,&nbsp;Wuji Zhao ,&nbsp;Shuhang Ren ,&nbsp;Yucui Hou ,&nbsp;Weize Wu\",\"doi\":\"10.1016/j.gce.2022.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Benzene (BEN) and cyclohexane (CYH), which have very close boiling points and a binary azeotrope, are the most difficult binary components in the separation of aromatic and non-aromatic hydrocarbons. This study further explored the separation mechanism and industrial application prospects of BEN ​+ ​CYH mixtures separated by a dicationic ionic liquid (DIL) [C<sub>5</sub>(MIM)<sub>2</sub>][NTf<sub>2</sub>]<sub>2</sub> based on experimental research. The calculation results of the Conductor-like Screening model Segment Activity Coefficient (COSMO-SAC) model show that selectivity and solvent capacity of the DIL are significantly improved. The effects of different anions and cations on the microstructure distribution and diffusion behavior of BEN ​+ ​CYH system were investigated by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. The results indicate that the anion [NTf<sub>2</sub>]<sup>−</sup> has low polarity, uniform charge distribution, and a dual role of hydrogen bonding and π-π bonding, and the cation [C<sub>5</sub>(MIM)<sub>2</sub>]<sup>2+</sup> has stronger interaction with BEN and higher selectivity than conventional cations. The liquid-liquid extraction and extractive distillation (LLE-ED) process using an optimized 65 mol/mol DIL ​+ ​35 mol/mol H<sub>2</sub>O mixed solution as the extractant was proposed, which solved the problem of low product purity in the LLE process and high energy consumption in the ED process. Under the best operating conditions, the purity of CYH product was 99.9%, the purity of BEN product was 99.6%, the recovery rate of BEN reached 99.9%, and the recovery rate of DIL reached 99.9%. The heat-integrated LLE-ED process reduced total annual cost by 21.6%, and reduced CO<sub>2</sub> emissions by 48.0%, which has broad industrial application prospects.</p></div>\",\"PeriodicalId\":66474,\"journal\":{\"name\":\"Green Chemical Engineering\",\"volume\":\"4 3\",\"pages\":\"Pages 312-323\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemical Engineering\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666952822000589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemical Engineering","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666952822000589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 8

摘要

苯(BEN)和环己烷(CYH)具有非常接近的沸点和二元共沸物,是芳烃和非芳烃分离中最困难的二元组分。本研究进一步探讨了苯的分离机理及工业应用前景​+​基于实验研究,通过二元离子液体(DIL)[C5(MIM)2][NTf2]2分离的CYH混合物。类导体筛选模型分段活性系数(COSMO-SAC)模型的计算结果表明,DIL的选择性和溶剂容量显著提高。不同阴离子和阳离子对苯甲酸微观结构分布和扩散行为的影响​+​通过量子化学(QC)计算和分子动力学(MD)模拟研究了CYH体系。结果表明,阴离子[NTf2]−极性低,电荷分布均匀,具有氢键和π-π键的双重作用,阳离子[C5(MIM)2]2+与苯的相互作用更强,选择性高于传统阳离子。使用优化的65mol/mol DIL的液-液萃取和萃取蒸馏(LLE-ED)工艺​+​提出了35mol/mol H2O混合溶液作为萃取剂,解决了LLE工艺中产品纯度低、ED工艺能耗高的问题。在最佳操作条件下,CYH产品纯度为99.9%,BEN产品纯度为99.6%,BEN回收率达到99.9%,DIL回收率达到99.9%.热集成LLE-ED工艺使年总成本降低21.6%,CO2排放量降低48.0%,具有广阔的工业应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highly efficient separation of benzene + cyclohexane mixtures by extraction combined extractive distillation using imidazolium-based dicationic ionic liquids

Benzene (BEN) and cyclohexane (CYH), which have very close boiling points and a binary azeotrope, are the most difficult binary components in the separation of aromatic and non-aromatic hydrocarbons. This study further explored the separation mechanism and industrial application prospects of BEN ​+ ​CYH mixtures separated by a dicationic ionic liquid (DIL) [C5(MIM)2][NTf2]2 based on experimental research. The calculation results of the Conductor-like Screening model Segment Activity Coefficient (COSMO-SAC) model show that selectivity and solvent capacity of the DIL are significantly improved. The effects of different anions and cations on the microstructure distribution and diffusion behavior of BEN ​+ ​CYH system were investigated by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. The results indicate that the anion [NTf2] has low polarity, uniform charge distribution, and a dual role of hydrogen bonding and π-π bonding, and the cation [C5(MIM)2]2+ has stronger interaction with BEN and higher selectivity than conventional cations. The liquid-liquid extraction and extractive distillation (LLE-ED) process using an optimized 65 mol/mol DIL ​+ ​35 mol/mol H2O mixed solution as the extractant was proposed, which solved the problem of low product purity in the LLE process and high energy consumption in the ED process. Under the best operating conditions, the purity of CYH product was 99.9%, the purity of BEN product was 99.6%, the recovery rate of BEN reached 99.9%, and the recovery rate of DIL reached 99.9%. The heat-integrated LLE-ED process reduced total annual cost by 21.6%, and reduced CO2 emissions by 48.0%, which has broad industrial application prospects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemical Engineering
Green Chemical Engineering Process Chemistry and Technology, Catalysis, Filtration and Separation
CiteScore
11.60
自引率
0.00%
发文量
58
审稿时长
51 days
期刊最新文献
Outside Back Cover OFC: Outside Front Cover OFC: Outside Front Cover Outside Back Cover Outside Back Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1