基于Cu-Pt双金属层的BlueP/WS2高性能表面等离子体共振生物传感器的理论分析

IF 0.5 Q4 OPTICS Photonics Letters of Poland Pub Date : 2023-07-02 DOI:10.4302/plp.v15i2.1206
Muthumanicam Myilsamy, Prabhakar Cecil Lordwin, Alagu Vibisha, Suresh Ponnan, Jaroszewicz Zbigniew, Rajesh Karupiya Balasundaram
{"title":"基于Cu-Pt双金属层的BlueP/WS2高性能表面等离子体共振生物传感器的理论分析","authors":"Muthumanicam Myilsamy, Prabhakar Cecil Lordwin, Alagu Vibisha, Suresh Ponnan, Jaroszewicz Zbigniew, Rajesh Karupiya Balasundaram","doi":"10.4302/plp.v15i2.1206","DOIUrl":null,"url":null,"abstract":"The present theoretical study exhibits the possibility of achieving extremely high sensitive surface plasmon resonance based biosensor comprising of Cu-Pt bimetallic layer and BlueP/WS2 hybrid nanostructure for angular interrogation method. Based of Transfer matrix method thickness of Cu and Pt as well as the number of BlueP/WS2 layer is optimized to obtain the best possible sensitivity and FOM. The well optimized Cu-Pt-BlueP/WS2 hybridstructure is found to generate sensitivity as high as 502°/RIU with FOM as 128.7RIU-1 such sensor is highly useful for detecting biomolecules. Full Text: PDF References\n\nA.H.M. Almawgani, M.G. Daher, S.A. Taya, M. Mashagbeh, I. Colak. \"Optical Detection of Fat Concentration in Milk Using MXene-Based Surface Plasmon Resonance Structure\", Biosensors 12, 535 (2022). CrossRef \nE. Kretschmann, H. Raether, \"Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light\", Z. Naturf. a 23, 2135 (1968). CrossRef \nM.G. Daher, Y. Trabelsi, Y.K. Prajapati, A. Panda, N.M. Ahmed, A.N.Z. Rashed., \"Highly sensitive detection of infected red blood cells (IRBCs) with plasmodium falciparum using surface plasmon resonance (SPR) nanostructure\", Opt. Quantum Electron. 55, 199 (2023). CrossRef \nA.H.M. Almawgani, M.G. Daher, S.A. Taya, M.M. Olaimat, A.R.H. Alhawari, I. Colak., \"Detection of Blood Plasma Concentration Theoretically Using SPR-Based Biosensor Employing Black Phosphor Layers and Different Metals\", Plasmonics 17,1751 (2022). CrossRef \nY. Saad, M. Selmi, M.H. Gazzah, A. Bajahzar, H. Belmabrouk, \"Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer\", Optik 190, 1 (2019). CrossRef \nN.K. Sharma, S. Shukla, V. Sajal, \"Surface plasmon resonance based fiber optic sensor using an additional layer of platinum: A theoretical study\", Optik 133, 43 (2017). CrossRef \nS. Shukla, M. Rani, N.K. Sharma, V. Sajal, \"Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor utilizing platinum layer\", Optik 126, 4636 (2015). CrossRef \nS. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, \"Theoretical analysis of sensitivity enhancement of surface plasmon resonance biosensor with zinc oxide and blue phosphorus/MoS2 heterostructure\", Optik 244, 167618 (2021). CrossRef \nN. Liu, S. Wang, Q. Cheng, B. Pang, J. Lv, \"High Sensitivity in Ni-Based SPR Sensor of Blue Phosphorene/Transition Metal Dichalcogenides Hybrid Nanostructure\", Plasmonics 16, 1567 (2021). CrossRef \nS. Shivangani, M.F. Alotaibi, Y. Al-Hadeethi, P. Lohia, S. Singh, D.K. Dwivedi, A. Umar, H.M. Alzayed, H. Algadi, S. Baskoutas, \"Numerical Study to Enhance the Sensitivity of a Surface Plasmon Resonance Sensor with BlueP/WS2-Covered Al2O3-Nickel Nanofilms\", Nanomater. Basel 12, 2205 (2022). CrossRef \nM. Yamamoto, \"Surface Plasmon Resonance (SPR) Theory: Tutorial\", Review of Polarography (JPN) 48, 209 (2002). CrossRef \nP.K. Maharana, T. Srivastava, R. Jha, \"Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements\", J. Phys. D: Appl. Phys. 47, 385102 (2014). CrossRef \nS. Pal, N. Pal, Y.K. Prajapati, J.P. Saini, \"Sensitivity Analysis of Surface Plasmon Resonance Biosensor Based on Heterostructure of 2D BlueP/MoS2 and MXene\", John Wiley & Sons, Inc. 103 (2020). CrossRef \nS. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, \"Sensitivity enhancement of SPR biosensor employing heterostructure blue phosphorus/MoS2 and silicon layer\", Emerg. Mater. Res. 11, 239 (2022). CrossRef \nR. Kumar, S. Pal, N. Pal, V. Mishra, Y.K. Prajapati, \"High-performance bimetallic surface plasmon resonance biochemical sensor using a black phosphorus–MXene hybrid structure\", Appl. Phys. A 127, 1 (2021). CrossRef \nM. Setareh, H. Kaatuzian, \"Sensitivity enhancement of a surface plasmon resonance sensor using Blue Phosphorene/MoS2 hetero-structure and barium titanate\", Superlattices Microstruct. 153, 106867 (2021). CrossRef \nS. Wang, N. Liu, Q. Cheng, B. Pang, J. Lv, \"Surface Plasmon Resonance on the Antimonene–Fe2O3–Copper Layer for Optical Attenuated Total Reflection Spectroscopic Application\", Plasmonics 16, 559 (2021). CrossRef \n\n ","PeriodicalId":20055,"journal":{"name":"Photonics Letters of Poland","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical analysis of a high-performance surface plasmon resonance biosensor using BlueP/WS2 over Cu-Pt bimetallic layer\",\"authors\":\"Muthumanicam Myilsamy, Prabhakar Cecil Lordwin, Alagu Vibisha, Suresh Ponnan, Jaroszewicz Zbigniew, Rajesh Karupiya Balasundaram\",\"doi\":\"10.4302/plp.v15i2.1206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present theoretical study exhibits the possibility of achieving extremely high sensitive surface plasmon resonance based biosensor comprising of Cu-Pt bimetallic layer and BlueP/WS2 hybrid nanostructure for angular interrogation method. Based of Transfer matrix method thickness of Cu and Pt as well as the number of BlueP/WS2 layer is optimized to obtain the best possible sensitivity and FOM. The well optimized Cu-Pt-BlueP/WS2 hybridstructure is found to generate sensitivity as high as 502°/RIU with FOM as 128.7RIU-1 such sensor is highly useful for detecting biomolecules. Full Text: PDF References\\n\\nA.H.M. Almawgani, M.G. Daher, S.A. Taya, M. Mashagbeh, I. Colak. \\\"Optical Detection of Fat Concentration in Milk Using MXene-Based Surface Plasmon Resonance Structure\\\", Biosensors 12, 535 (2022). CrossRef \\nE. Kretschmann, H. Raether, \\\"Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light\\\", Z. Naturf. a 23, 2135 (1968). CrossRef \\nM.G. Daher, Y. Trabelsi, Y.K. Prajapati, A. Panda, N.M. Ahmed, A.N.Z. Rashed., \\\"Highly sensitive detection of infected red blood cells (IRBCs) with plasmodium falciparum using surface plasmon resonance (SPR) nanostructure\\\", Opt. Quantum Electron. 55, 199 (2023). CrossRef \\nA.H.M. Almawgani, M.G. Daher, S.A. Taya, M.M. Olaimat, A.R.H. Alhawari, I. Colak., \\\"Detection of Blood Plasma Concentration Theoretically Using SPR-Based Biosensor Employing Black Phosphor Layers and Different Metals\\\", Plasmonics 17,1751 (2022). CrossRef \\nY. Saad, M. Selmi, M.H. Gazzah, A. Bajahzar, H. Belmabrouk, \\\"Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer\\\", Optik 190, 1 (2019). CrossRef \\nN.K. Sharma, S. Shukla, V. Sajal, \\\"Surface plasmon resonance based fiber optic sensor using an additional layer of platinum: A theoretical study\\\", Optik 133, 43 (2017). CrossRef \\nS. Shukla, M. Rani, N.K. Sharma, V. Sajal, \\\"Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor utilizing platinum layer\\\", Optik 126, 4636 (2015). CrossRef \\nS. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, \\\"Theoretical analysis of sensitivity enhancement of surface plasmon resonance biosensor with zinc oxide and blue phosphorus/MoS2 heterostructure\\\", Optik 244, 167618 (2021). CrossRef \\nN. Liu, S. Wang, Q. Cheng, B. Pang, J. Lv, \\\"High Sensitivity in Ni-Based SPR Sensor of Blue Phosphorene/Transition Metal Dichalcogenides Hybrid Nanostructure\\\", Plasmonics 16, 1567 (2021). CrossRef \\nS. Shivangani, M.F. Alotaibi, Y. Al-Hadeethi, P. Lohia, S. Singh, D.K. Dwivedi, A. Umar, H.M. Alzayed, H. Algadi, S. Baskoutas, \\\"Numerical Study to Enhance the Sensitivity of a Surface Plasmon Resonance Sensor with BlueP/WS2-Covered Al2O3-Nickel Nanofilms\\\", Nanomater. Basel 12, 2205 (2022). CrossRef \\nM. Yamamoto, \\\"Surface Plasmon Resonance (SPR) Theory: Tutorial\\\", Review of Polarography (JPN) 48, 209 (2002). CrossRef \\nP.K. Maharana, T. Srivastava, R. Jha, \\\"Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements\\\", J. Phys. D: Appl. Phys. 47, 385102 (2014). CrossRef \\nS. Pal, N. Pal, Y.K. Prajapati, J.P. Saini, \\\"Sensitivity Analysis of Surface Plasmon Resonance Biosensor Based on Heterostructure of 2D BlueP/MoS2 and MXene\\\", John Wiley & Sons, Inc. 103 (2020). CrossRef \\nS. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, \\\"Sensitivity enhancement of SPR biosensor employing heterostructure blue phosphorus/MoS2 and silicon layer\\\", Emerg. Mater. Res. 11, 239 (2022). CrossRef \\nR. Kumar, S. Pal, N. Pal, V. Mishra, Y.K. Prajapati, \\\"High-performance bimetallic surface plasmon resonance biochemical sensor using a black phosphorus–MXene hybrid structure\\\", Appl. Phys. A 127, 1 (2021). CrossRef \\nM. Setareh, H. Kaatuzian, \\\"Sensitivity enhancement of a surface plasmon resonance sensor using Blue Phosphorene/MoS2 hetero-structure and barium titanate\\\", Superlattices Microstruct. 153, 106867 (2021). CrossRef \\nS. Wang, N. Liu, Q. Cheng, B. Pang, J. Lv, \\\"Surface Plasmon Resonance on the Antimonene–Fe2O3–Copper Layer for Optical Attenuated Total Reflection Spectroscopic Application\\\", Plasmonics 16, 559 (2021). CrossRef \\n\\n \",\"PeriodicalId\":20055,\"journal\":{\"name\":\"Photonics Letters of Poland\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics Letters of Poland\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4302/plp.v15i2.1206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics Letters of Poland","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4302/plp.v15i2.1206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的理论研究表明,基于Cu-Pt双金属层和BlueP/WS2混合纳米结构的高灵敏度表面等离子体共振生物传感器有可能用于角探测方法。基于传递矩阵法,优化了Cu和Pt的厚度以及BlueP/WS2层的数量,以获得最佳的灵敏度和FOM。优化后的Cu-Pt-BlueP/WS2杂化结构产生的灵敏度高达502°/RIU, FOM为128.7RIU,这种传感器在检测生物分子方面非常有用。全文:PDFAlmawgani, M.G. Daher, S.A. Taya, M. Mashagbeh, I. Colak。“基于mxene表面等离子体共振结构的牛奶脂肪浓度光学检测”,生物传感器12,535(2022)。CrossRef E. Kretschmann, H. Raether,“非辐射表面等离子体在光激发下的辐射衰减”,自然科学学报。A 23,2135(1968)。交叉参考M.G. Daher, Y. Trabelsi, Y.K. Prajapati, A. Panda, N.M. Ahmed, A.N.Z. Rashed。,“利用表面等离子体共振(SPR)纳米结构对恶性疟原虫感染红细胞(irbc)的高灵敏度检测”,量子电子学报,55,199(2023)。CrossRef A.H.M. Almawgani, M.G. Daher, S.A. Taya, M.M. Olaimat, A.R.H. Alhawari, I. Colak。,“基于spr的生物传感器对血浆浓度的检测”,《等离子体学报》17,1751(2022)。CrossRef Y. Saad, M. Selmi, M.H. Gazzah, a . bajaahzar, H. Belmabrouk,“铜基光纤SPR传感器的氧化层增强性能”,光学学报,19(2019)。CrossRef N.K. Sharma, S. Shukla, V. Sajal,“基于表面等离子体共振的光纤传感器:基于附加层铂的理论研究”,光学学报,2013,43(2017)。陈建军,陈建军,陈建军,“基于铂层的表面等离子体共振光纤传感器的灵敏度增强”,光学学报,36(4)(2015)。CrossRef S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi,“氧化锌和蓝磷/MoS2异质结构表面等离子体共振生物传感器的灵敏度增强理论分析”,光学学报,24(4),16618(2021)。引用本文:刘宁,王世生,程清,庞斌,吕军,“高灵敏度蓝色磷烯/过渡金属二硫族化合物杂化纳米结构的SPR传感器”,等离子体学报,16(7)(2021)。CrossRef S. Shivangani, M.F. Alotaibi, Y. Al-Hadeethi, P. Lohia, S. Singh, D.K. Dwivedi, a . Umar, H.M. Alzayed, H. Algadi, S. Baskoutas,“提高al2o3 -镍纳米膜表面等离子体共振传感器灵敏度的数值研究”巴塞尔协议12,2205(2022)。CrossRef M. Yamamoto,“表面等离子体共振(SPR)理论:教程”,极谱学刊(JPN) 48, 209(2002)。P.K. Maharana, T. Srivastava, R. Jha,“基于石墨烯的低折射率介电介质表面等离子体共振传感器的近红外测量”,物理学报。D::。物理学报,47,38(2014)。CrossRef S. Pal, N. Pal, Y.K. Prajapati, J.P. Saini,“基于2D BlueP/MoS2和MXene异质结构的表面等离子体共振生物传感器的灵敏度分析”,John Wiley & Sons, Inc. 103(2020)。CrossRef S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi,“异质结构蓝磷/MoS2和硅层对SPR生物传感器灵敏度的增强”,新兴。板牙。Res. 11,239(2022)。CrossRef R. Kumar, S. Pal, N. Pal, V. Mishra, Y.K. Prajapati,“基于黑磷- mxene杂化结构的高性能双金属表面等离子体共振生化传感器”,applied。理论物理。A 127, 1(2021)。CrossRef M. Setareh, H. Kaatuzian,“利用钛酸钡增强表面等离子体共振传感器的灵敏度”,《超晶格微结构》(cssci), 153,10(6)(2021)。引用本文:王淑娟,刘宁,程清,庞斌,吕军,“光学衰减全反射光谱中fe2o3 - Antimonene-Fe2O3-Copper层表面等离子体共振”,等离子体学报,16,559(2021)。CrossRef
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical analysis of a high-performance surface plasmon resonance biosensor using BlueP/WS2 over Cu-Pt bimetallic layer
The present theoretical study exhibits the possibility of achieving extremely high sensitive surface plasmon resonance based biosensor comprising of Cu-Pt bimetallic layer and BlueP/WS2 hybrid nanostructure for angular interrogation method. Based of Transfer matrix method thickness of Cu and Pt as well as the number of BlueP/WS2 layer is optimized to obtain the best possible sensitivity and FOM. The well optimized Cu-Pt-BlueP/WS2 hybridstructure is found to generate sensitivity as high as 502°/RIU with FOM as 128.7RIU-1 such sensor is highly useful for detecting biomolecules. Full Text: PDF References A.H.M. Almawgani, M.G. Daher, S.A. Taya, M. Mashagbeh, I. Colak. "Optical Detection of Fat Concentration in Milk Using MXene-Based Surface Plasmon Resonance Structure", Biosensors 12, 535 (2022). CrossRef E. Kretschmann, H. Raether, "Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light", Z. Naturf. a 23, 2135 (1968). CrossRef M.G. Daher, Y. Trabelsi, Y.K. Prajapati, A. Panda, N.M. Ahmed, A.N.Z. Rashed., "Highly sensitive detection of infected red blood cells (IRBCs) with plasmodium falciparum using surface plasmon resonance (SPR) nanostructure", Opt. Quantum Electron. 55, 199 (2023). CrossRef A.H.M. Almawgani, M.G. Daher, S.A. Taya, M.M. Olaimat, A.R.H. Alhawari, I. Colak., "Detection of Blood Plasma Concentration Theoretically Using SPR-Based Biosensor Employing Black Phosphor Layers and Different Metals", Plasmonics 17,1751 (2022). CrossRef Y. Saad, M. Selmi, M.H. Gazzah, A. Bajahzar, H. Belmabrouk, "Performance enhancement of a copper-based optical fiber SPR sensor by the addition of an oxide layer", Optik 190, 1 (2019). CrossRef N.K. Sharma, S. Shukla, V. Sajal, "Surface plasmon resonance based fiber optic sensor using an additional layer of platinum: A theoretical study", Optik 133, 43 (2017). CrossRef S. Shukla, M. Rani, N.K. Sharma, V. Sajal, "Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor utilizing platinum layer", Optik 126, 4636 (2015). CrossRef S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, "Theoretical analysis of sensitivity enhancement of surface plasmon resonance biosensor with zinc oxide and blue phosphorus/MoS2 heterostructure", Optik 244, 167618 (2021). CrossRef N. Liu, S. Wang, Q. Cheng, B. Pang, J. Lv, "High Sensitivity in Ni-Based SPR Sensor of Blue Phosphorene/Transition Metal Dichalcogenides Hybrid Nanostructure", Plasmonics 16, 1567 (2021). CrossRef S. Shivangani, M.F. Alotaibi, Y. Al-Hadeethi, P. Lohia, S. Singh, D.K. Dwivedi, A. Umar, H.M. Alzayed, H. Algadi, S. Baskoutas, "Numerical Study to Enhance the Sensitivity of a Surface Plasmon Resonance Sensor with BlueP/WS2-Covered Al2O3-Nickel Nanofilms", Nanomater. Basel 12, 2205 (2022). CrossRef M. Yamamoto, "Surface Plasmon Resonance (SPR) Theory: Tutorial", Review of Polarography (JPN) 48, 209 (2002). CrossRef P.K. Maharana, T. Srivastava, R. Jha, "Low index dielectric mediated surface plasmon resonance sensor based on graphene for near infrared measurements", J. Phys. D: Appl. Phys. 47, 385102 (2014). CrossRef S. Pal, N. Pal, Y.K. Prajapati, J.P. Saini, "Sensitivity Analysis of Surface Plasmon Resonance Biosensor Based on Heterostructure of 2D BlueP/MoS2 and MXene", John Wiley & Sons, Inc. 103 (2020). CrossRef S. Singh, A.K. Sharma, P. Lohia, D.K. Dwivedi, "Sensitivity enhancement of SPR biosensor employing heterostructure blue phosphorus/MoS2 and silicon layer", Emerg. Mater. Res. 11, 239 (2022). CrossRef R. Kumar, S. Pal, N. Pal, V. Mishra, Y.K. Prajapati, "High-performance bimetallic surface plasmon resonance biochemical sensor using a black phosphorus–MXene hybrid structure", Appl. Phys. A 127, 1 (2021). CrossRef M. Setareh, H. Kaatuzian, "Sensitivity enhancement of a surface plasmon resonance sensor using Blue Phosphorene/MoS2 hetero-structure and barium titanate", Superlattices Microstruct. 153, 106867 (2021). CrossRef S. Wang, N. Liu, Q. Cheng, B. Pang, J. Lv, "Surface Plasmon Resonance on the Antimonene–Fe2O3–Copper Layer for Optical Attenuated Total Reflection Spectroscopic Application", Plasmonics 16, 559 (2021). CrossRef  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
24
期刊最新文献
Making use of Digital Image Correlation to identify the true character of the applied load Technological challenges in the development of silica-titania platform for integrated optics Modelling of Germanium-Based Perovskite Solar Cell for Different Hole Transport Materials and Defect Density Application of fiber optic sensors using Machine Learning algorithms for temperature measurement of lithium-ion batteries Focusing properties of Azimuthally Polarized Lorentz Gauss Vortex Beam through a Dielectric Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1