J. C. Molina-Villegas, Jorge Eliecer Ballesteros Ortega, Andrés Toro
{"title":"弹性基础上梁的格林函数分析","authors":"J. C. Molina-Villegas, Jorge Eliecer Ballesteros Ortega, Andrés Toro","doi":"10.23967/j.rimni.2021.06.002","DOIUrl":null,"url":null,"abstract":"Beams on elastic foundation are basic elements within structural analysis, which are used to model foundation beams, foundation piles, retaining walls, and more complex structures that include some of these elements. For their analysis, the finite element method is usually used [1], which produces an approximate solution of the problem; and the Green's function stiffness method [2], which produces an exact solution. This article presents a methodology 100% based on the use of Green function's (response to a unit point force), to obtain the exact response of beams on elastic foundation. The main advantage of this formulation is its computational low cost compared to the aforementioned alternatives, and even for a large number of problems, it can be expressed only by means of sums and integrals, which can be easily performed numerically. Also, a great variety of Green function's for finite and infinite beams on elastic foundations with different boundary conditions are also presented, as well as some examples with the implementation of the proposed methodology.","PeriodicalId":49607,"journal":{"name":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of beams on elastic foundations using Green's functions\",\"authors\":\"J. C. Molina-Villegas, Jorge Eliecer Ballesteros Ortega, Andrés Toro\",\"doi\":\"10.23967/j.rimni.2021.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beams on elastic foundation are basic elements within structural analysis, which are used to model foundation beams, foundation piles, retaining walls, and more complex structures that include some of these elements. For their analysis, the finite element method is usually used [1], which produces an approximate solution of the problem; and the Green's function stiffness method [2], which produces an exact solution. This article presents a methodology 100% based on the use of Green function's (response to a unit point force), to obtain the exact response of beams on elastic foundation. The main advantage of this formulation is its computational low cost compared to the aforementioned alternatives, and even for a large number of problems, it can be expressed only by means of sums and integrals, which can be easily performed numerically. Also, a great variety of Green function's for finite and infinite beams on elastic foundations with different boundary conditions are also presented, as well as some examples with the implementation of the proposed methodology.\",\"PeriodicalId\":49607,\"journal\":{\"name\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.23967/j.rimni.2021.06.002\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.23967/j.rimni.2021.06.002","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of beams on elastic foundations using Green's functions
Beams on elastic foundation are basic elements within structural analysis, which are used to model foundation beams, foundation piles, retaining walls, and more complex structures that include some of these elements. For their analysis, the finite element method is usually used [1], which produces an approximate solution of the problem; and the Green's function stiffness method [2], which produces an exact solution. This article presents a methodology 100% based on the use of Green function's (response to a unit point force), to obtain the exact response of beams on elastic foundation. The main advantage of this formulation is its computational low cost compared to the aforementioned alternatives, and even for a large number of problems, it can be expressed only by means of sums and integrals, which can be easily performed numerically. Also, a great variety of Green function's for finite and infinite beams on elastic foundations with different boundary conditions are also presented, as well as some examples with the implementation of the proposed methodology.
期刊介绍:
International Journal of Numerical Methods for Calculation and Design in Engineering (RIMNI) contributes to the spread of theoretical advances and practical applications of numerical methods in engineering and other applied sciences. RIMNI publishes articles written in Spanish, Portuguese and English. The scope of the journal includes mathematical and numerical models of engineering problems, development and application of numerical methods, advances in software, computer design innovations, educational aspects of numerical methods, etc. RIMNI is an essential source of information for scientifics and engineers in numerical methods theory and applications. RIMNI contributes to the interdisciplinar exchange and thus shortens the distance between theoretical developments and practical applications.