利用碳纤维复合结构获取机械能的接触-分离模式摩擦电纳米发电机

IF 3.1 Q2 MATERIALS SCIENCE, COMPOSITES Functional Composites and Structures Pub Date : 2023-08-17 DOI:10.1088/2631-6331/acf124
Seonghwan Lee, Young‐Bin Park
{"title":"利用碳纤维复合结构获取机械能的接触-分离模式摩擦电纳米发电机","authors":"Seonghwan Lee, Young‐Bin Park","doi":"10.1088/2631-6331/acf124","DOIUrl":null,"url":null,"abstract":"The rapid depletion and adverse environmental impacts of fossil fuels necessitate the development of alternative sources of sustainable and ecofriendly energy to address the increasing energy demand due to population growth and technological advancement. Energy harvesting is a major strategy for the generation of sustainable and clean energy. It involves the scavenging and subsequent conversion of the energy from the surroundings into usable electrical energy. In this study, the conversion of the mechanical energy externally applied to a carbon-fiber-reinforced plastic (CFRP)-based structure into electrical energy using a triboelectric nanogenerator (TENG) was demonstrated. CFRPs are ultralight composites with high strength and stiffness, and they are primarily utilized in aircraft and automobiles. CFRP was the primary component of the CFRP-based TENG (CFRP-TENG) developed in this study. The carbon fibers of the CFRP acted as an electrode. Polyamide 6, which corresponded to the matrix of the CFRP, and polytetrafluoroethylene, which was attached to the surface of the CFRP, acted as friction pairs. The CFRP-TENG generated a voltage, short-circuit current, and power of up to 62 V, 7.76 μA, and 400 mW m−2, respectively, with an optimal external resistance of 20 MΩ. A structural CFRP was successfully applied as a TENG in this study; thus, the possibility of transforming a CFRP-based structure into a self-powering structure was demonstrated. The technique used in this study is expected to serve as a novel approach for energy generation in cyber-physical systems. This will facilitate the attachment of self-supporting energy systems such as sensors, power management systems, and actuators to the human body without additional batteries.","PeriodicalId":12652,"journal":{"name":"Functional Composites and Structures","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact–separation mode triboelectric nanogenerator utilizing carbon-fiber composite structure for harvesting mechanical energy\",\"authors\":\"Seonghwan Lee, Young‐Bin Park\",\"doi\":\"10.1088/2631-6331/acf124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid depletion and adverse environmental impacts of fossil fuels necessitate the development of alternative sources of sustainable and ecofriendly energy to address the increasing energy demand due to population growth and technological advancement. Energy harvesting is a major strategy for the generation of sustainable and clean energy. It involves the scavenging and subsequent conversion of the energy from the surroundings into usable electrical energy. In this study, the conversion of the mechanical energy externally applied to a carbon-fiber-reinforced plastic (CFRP)-based structure into electrical energy using a triboelectric nanogenerator (TENG) was demonstrated. CFRPs are ultralight composites with high strength and stiffness, and they are primarily utilized in aircraft and automobiles. CFRP was the primary component of the CFRP-based TENG (CFRP-TENG) developed in this study. The carbon fibers of the CFRP acted as an electrode. Polyamide 6, which corresponded to the matrix of the CFRP, and polytetrafluoroethylene, which was attached to the surface of the CFRP, acted as friction pairs. The CFRP-TENG generated a voltage, short-circuit current, and power of up to 62 V, 7.76 μA, and 400 mW m−2, respectively, with an optimal external resistance of 20 MΩ. A structural CFRP was successfully applied as a TENG in this study; thus, the possibility of transforming a CFRP-based structure into a self-powering structure was demonstrated. The technique used in this study is expected to serve as a novel approach for energy generation in cyber-physical systems. This will facilitate the attachment of self-supporting energy systems such as sensors, power management systems, and actuators to the human body without additional batteries.\",\"PeriodicalId\":12652,\"journal\":{\"name\":\"Functional Composites and Structures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Composites and Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-6331/acf124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Composites and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-6331/acf124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

由于化石燃料的迅速耗竭和对环境的不利影响,必须开发可持续和生态友好的替代能源,以解决由于人口增长和技术进步而增加的能源需求。能源收集是产生可持续和清洁能源的主要战略。它包括从周围环境中获取能量并随后将其转换为可用的电能。在这项研究中,展示了使用摩擦电纳米发电机(TENG)将外部施加到碳纤维增强塑料(CFRP)结构上的机械能转换为电能。cfrp是一种具有高强度和刚度的超轻复合材料,主要应用于飞机和汽车。CFRP是本研究开发的基于CFRP的TENG (CFRP-TENG)的主要成分。CFRP的碳纤维充当电极。与CFRP的基体相对应的聚酰胺6和附着在CFRP表面的聚四氟乙烯作为摩擦副。CFRP-TENG产生的电压、短路电流和功率分别高达62 V、7.76 μA和400 mW m−2,最佳外部电阻为20 MΩ。在本研究中成功地应用了一种结构CFRP作为TENG;因此,证明了将基于cfrp的结构转变为自供电结构的可能性。本研究中使用的技术有望成为网络物理系统中能源产生的一种新方法。这将有助于在不需要额外电池的情况下,将传感器、电源管理系统和执行器等自支持能源系统附着在人体上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contact–separation mode triboelectric nanogenerator utilizing carbon-fiber composite structure for harvesting mechanical energy
The rapid depletion and adverse environmental impacts of fossil fuels necessitate the development of alternative sources of sustainable and ecofriendly energy to address the increasing energy demand due to population growth and technological advancement. Energy harvesting is a major strategy for the generation of sustainable and clean energy. It involves the scavenging and subsequent conversion of the energy from the surroundings into usable electrical energy. In this study, the conversion of the mechanical energy externally applied to a carbon-fiber-reinforced plastic (CFRP)-based structure into electrical energy using a triboelectric nanogenerator (TENG) was demonstrated. CFRPs are ultralight composites with high strength and stiffness, and they are primarily utilized in aircraft and automobiles. CFRP was the primary component of the CFRP-based TENG (CFRP-TENG) developed in this study. The carbon fibers of the CFRP acted as an electrode. Polyamide 6, which corresponded to the matrix of the CFRP, and polytetrafluoroethylene, which was attached to the surface of the CFRP, acted as friction pairs. The CFRP-TENG generated a voltage, short-circuit current, and power of up to 62 V, 7.76 μA, and 400 mW m−2, respectively, with an optimal external resistance of 20 MΩ. A structural CFRP was successfully applied as a TENG in this study; thus, the possibility of transforming a CFRP-based structure into a self-powering structure was demonstrated. The technique used in this study is expected to serve as a novel approach for energy generation in cyber-physical systems. This will facilitate the attachment of self-supporting energy systems such as sensors, power management systems, and actuators to the human body without additional batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Functional Composites and Structures
Functional Composites and Structures Materials Science-Materials Science (miscellaneous)
CiteScore
4.80
自引率
10.70%
发文量
33
期刊最新文献
Advanced doping method for highly conductive CNT fibers with enhanced thermal stability A simplified predictive model for the compression behavior of self-healing microcapsules using an empirical coefficient Development of multi droplet-based electricity generator system for energy harvesting improvement from a single droplet Measurement of the water absorption on hybrid carbon fibre prepreg waste composite and its impact on flexural performance Simulation of the tensile behaviour of biaxial knitted fabrics produced based on rib structure using a macro constitutive model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1