Reem Alrashoudi, Manal Abudawood, Ayesha Mateen, H. Tabassum, Noura Alghumlas, S. Fatima, Basmah Almaarik, Farah Maqsood, N. A. Al Musayeib, M. Amina
{"title":"弯曲珊瑚茎提取物绿色合成氧化镁纳米颗粒的表征及其抗菌、抗氧化和抗增殖活性","authors":"Reem Alrashoudi, Manal Abudawood, Ayesha Mateen, H. Tabassum, Noura Alghumlas, S. Fatima, Basmah Almaarik, Farah Maqsood, N. A. Al Musayeib, M. Amina","doi":"10.4103/2221-1691.380563","DOIUrl":null,"url":null,"abstract":"Objective: To synthesize magnesium oxide nanoparticles using ethanol extract of shoots of Plicosepalus curviflorus (PC-MgONPs) and evaluate the antimicrobial, antioxidant, and anti-proliferative activities of PC-MgONPs. Methods: The green synthesized PC-MgONPs were characterized by ultraviolet-visible (UV), Fourier-transform infrared spectroscopy, zeta potential, energy dispersive X-ray, and scanning electron microscopy. Furthermore, we investigated total antioxidant capacity and antimicrobial and anti-proliferative activities using breast cancer cell lines (MDA-231). Results: The UV spectrum of PC-MgONPs showed a sharp absorption peak at 300 nm. The presence of magnesium, oxygen, and sodium was confirmed by energy dispersive X-ray analysis. Scanning electron microscopy revealed PC-MgONPs as roughly spherical granular structures with sizes ranging from 20.0 to 76.4 nm. PC-MgONPs showed considerable antimicrobial activities against Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans with zones of inhibition of 11-17 mm. In addition, total antioxidant capacity and anti-proliferative activity of PC-MgONPs against MDA-231 cells were dose-dependent. Conclusions: The synthesized PC-MgONPs could be a potent antimicrobial, antioxidant and anti-cancer agent, which needs further investigation.","PeriodicalId":8560,"journal":{"name":"Asian Pacific journal of tropical biomedicine","volume":"13 1","pages":"315 - 324"},"PeriodicalIF":1.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and antimicrobial, antioxidant, and anti-proliferative activities of green synthesized magnesium oxide nanoparticles with shoot extracts of Plicosepalus curviflorus\",\"authors\":\"Reem Alrashoudi, Manal Abudawood, Ayesha Mateen, H. Tabassum, Noura Alghumlas, S. Fatima, Basmah Almaarik, Farah Maqsood, N. A. Al Musayeib, M. Amina\",\"doi\":\"10.4103/2221-1691.380563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: To synthesize magnesium oxide nanoparticles using ethanol extract of shoots of Plicosepalus curviflorus (PC-MgONPs) and evaluate the antimicrobial, antioxidant, and anti-proliferative activities of PC-MgONPs. Methods: The green synthesized PC-MgONPs were characterized by ultraviolet-visible (UV), Fourier-transform infrared spectroscopy, zeta potential, energy dispersive X-ray, and scanning electron microscopy. Furthermore, we investigated total antioxidant capacity and antimicrobial and anti-proliferative activities using breast cancer cell lines (MDA-231). Results: The UV spectrum of PC-MgONPs showed a sharp absorption peak at 300 nm. The presence of magnesium, oxygen, and sodium was confirmed by energy dispersive X-ray analysis. Scanning electron microscopy revealed PC-MgONPs as roughly spherical granular structures with sizes ranging from 20.0 to 76.4 nm. PC-MgONPs showed considerable antimicrobial activities against Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans with zones of inhibition of 11-17 mm. In addition, total antioxidant capacity and anti-proliferative activity of PC-MgONPs against MDA-231 cells were dose-dependent. Conclusions: The synthesized PC-MgONPs could be a potent antimicrobial, antioxidant and anti-cancer agent, which needs further investigation.\",\"PeriodicalId\":8560,\"journal\":{\"name\":\"Asian Pacific journal of tropical biomedicine\",\"volume\":\"13 1\",\"pages\":\"315 - 324\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Pacific journal of tropical biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/2221-1691.380563\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TROPICAL MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Pacific journal of tropical biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/2221-1691.380563","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TROPICAL MEDICINE","Score":null,"Total":0}
Characterization and antimicrobial, antioxidant, and anti-proliferative activities of green synthesized magnesium oxide nanoparticles with shoot extracts of Plicosepalus curviflorus
Objective: To synthesize magnesium oxide nanoparticles using ethanol extract of shoots of Plicosepalus curviflorus (PC-MgONPs) and evaluate the antimicrobial, antioxidant, and anti-proliferative activities of PC-MgONPs. Methods: The green synthesized PC-MgONPs were characterized by ultraviolet-visible (UV), Fourier-transform infrared spectroscopy, zeta potential, energy dispersive X-ray, and scanning electron microscopy. Furthermore, we investigated total antioxidant capacity and antimicrobial and anti-proliferative activities using breast cancer cell lines (MDA-231). Results: The UV spectrum of PC-MgONPs showed a sharp absorption peak at 300 nm. The presence of magnesium, oxygen, and sodium was confirmed by energy dispersive X-ray analysis. Scanning electron microscopy revealed PC-MgONPs as roughly spherical granular structures with sizes ranging from 20.0 to 76.4 nm. PC-MgONPs showed considerable antimicrobial activities against Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans with zones of inhibition of 11-17 mm. In addition, total antioxidant capacity and anti-proliferative activity of PC-MgONPs against MDA-231 cells were dose-dependent. Conclusions: The synthesized PC-MgONPs could be a potent antimicrobial, antioxidant and anti-cancer agent, which needs further investigation.
期刊介绍:
The journal will cover technical and clinical studies related to health, ethical and social issues in field of biology, bacteriology, biochemistry, biotechnology, cell biology, environmental biology, microbiology, medical microbiology, pharmacology, physiology, pathology, immunology, virology, toxicology, epidemiology, vaccinology, hematology, histopathology, cytology, genetics and tropical agriculture. Articles with clinical interest and implications will be given preference.