{"title":"3 × 3广义Chaplygin气体方程解的消失压力极限中的浓度和空化","authors":"Yu Zhang, S. Fan, Yanyan Zhang","doi":"10.1051/mmnp/2022009","DOIUrl":null,"url":null,"abstract":"The phenomena of concentration and cavitation are identified and analyzed by studying the vanishing pressure limit of solutions to the 3×3 isentropic compressible Euler equations for generalized Chaplygin gas (GCG) with a small parameter. It is rigorously proved that, any Riemann solution containing two shocks and possibly one-contact-discontinuity of the GCG equations converges to a delta-shock solution of the same system as the parameter decreases to a certain critical value. Moreover, as the parameter goes to zero, that is, the pressure vanishes, the limiting solution is just the delta-shock solution of the pressureless gas dynamics (PGD) model, and the intermediate density between the two shocks tends to a weighted δ -measure that forms the delta shock wave; any Riemann solution containing two rarefaction waves and possibly one contact-discontinuity tends to a two-contact-discontinuity solution of the PGD model, and the nonvacuum intermediate state in between tends to a vacuum state. Finally, some numerical results are presented to exhibit the processes of concentration and cavitation as the pressure decreases.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concentration and cavitation in the vanishing pressure limit of solutions to a 3 × 3 generalized Chaplygin gas equations\",\"authors\":\"Yu Zhang, S. Fan, Yanyan Zhang\",\"doi\":\"10.1051/mmnp/2022009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phenomena of concentration and cavitation are identified and analyzed by studying the vanishing pressure limit of solutions to the 3×3 isentropic compressible Euler equations for generalized Chaplygin gas (GCG) with a small parameter. It is rigorously proved that, any Riemann solution containing two shocks and possibly one-contact-discontinuity of the GCG equations converges to a delta-shock solution of the same system as the parameter decreases to a certain critical value. Moreover, as the parameter goes to zero, that is, the pressure vanishes, the limiting solution is just the delta-shock solution of the pressureless gas dynamics (PGD) model, and the intermediate density between the two shocks tends to a weighted δ -measure that forms the delta shock wave; any Riemann solution containing two rarefaction waves and possibly one contact-discontinuity tends to a two-contact-discontinuity solution of the PGD model, and the nonvacuum intermediate state in between tends to a vacuum state. Finally, some numerical results are presented to exhibit the processes of concentration and cavitation as the pressure decreases.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/mmnp/2022009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/mmnp/2022009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Concentration and cavitation in the vanishing pressure limit of solutions to a 3 × 3 generalized Chaplygin gas equations
The phenomena of concentration and cavitation are identified and analyzed by studying the vanishing pressure limit of solutions to the 3×3 isentropic compressible Euler equations for generalized Chaplygin gas (GCG) with a small parameter. It is rigorously proved that, any Riemann solution containing two shocks and possibly one-contact-discontinuity of the GCG equations converges to a delta-shock solution of the same system as the parameter decreases to a certain critical value. Moreover, as the parameter goes to zero, that is, the pressure vanishes, the limiting solution is just the delta-shock solution of the pressureless gas dynamics (PGD) model, and the intermediate density between the two shocks tends to a weighted δ -measure that forms the delta shock wave; any Riemann solution containing two rarefaction waves and possibly one contact-discontinuity tends to a two-contact-discontinuity solution of the PGD model, and the nonvacuum intermediate state in between tends to a vacuum state. Finally, some numerical results are presented to exhibit the processes of concentration and cavitation as the pressure decreases.