藤黄茎皮三萜类化合物及其对A549肺癌癌症细胞系的细胞毒性研究

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY Indonesian Journal of Chemistry Pub Date : 2023-08-15 DOI:10.22146/ijc.78748
D. Harneti, Iqbal Wahyu Mustaqim, Darwati Darwati, Al Arofatus Naini, Purnama Purnama, Erina Hilmayanti, T. Mayanti, N. Nurlelasari, S. Gaffar, R. Maharani, K. Farabi, U. Supratman, S. Fajriah, M. N. Azmi, Y. Shiono
{"title":"藤黄茎皮三萜类化合物及其对A549肺癌癌症细胞系的细胞毒性研究","authors":"D. Harneti, Iqbal Wahyu Mustaqim, Darwati Darwati, Al Arofatus Naini, Purnama Purnama, Erina Hilmayanti, T. Mayanti, N. Nurlelasari, S. Gaffar, R. Maharani, K. Farabi, U. Supratman, S. Fajriah, M. N. Azmi, Y. Shiono","doi":"10.22146/ijc.78748","DOIUrl":null,"url":null,"abstract":"The Aglaia species, which contains triterpenoids, is the most numerous in the Meliaceae family. The A. cucullata species, of which there are only a few known examples, has received scant research attention. This investigation aims to identify triterpenoids in an n-hexane preparation of A. cucullata stem bark and evaluate their effects against the A549 lung cancer cell line. Five dammarane-type triterpenoids were isolated from the A. cucullata trunk bark, which is (1) (20S)-20-hydroxydammar-24-en-3-one, (2) cabraleone, (3) cabralealactone, (4) eichlerianic acid, and (5) (+)-fouquierol. Their chemical structures were determined using infrared, high-resolution mass spectrometry, and nuclear magnetic resonance, as well as through data comparison of the reported compounds. Compound 1 was priorly separated from the Aglaia genus, compounds 2–4 were first isolated from the A. cucullata species, and compound 5 has been reportedly isolated from the Meliaceae family and the Aglaia genus. All substances were tested for their lethal potential against the A549 lung cancer cell type. A seco structure in the A ring of dammarane-type triterpenoid might play an important part in the lethal activity of component 4, which showed the greatest activity with an IC50 value of 32.17 µM against the A549 lung cancer cell line.","PeriodicalId":13515,"journal":{"name":"Indonesian Journal of Chemistry","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triterpenoids from the Stem Bark of Aglaia cucullata (Meliaceae) and Their Cytotoxic Activity against A549 Lung Cancer Cell Line\",\"authors\":\"D. Harneti, Iqbal Wahyu Mustaqim, Darwati Darwati, Al Arofatus Naini, Purnama Purnama, Erina Hilmayanti, T. Mayanti, N. Nurlelasari, S. Gaffar, R. Maharani, K. Farabi, U. Supratman, S. Fajriah, M. N. Azmi, Y. Shiono\",\"doi\":\"10.22146/ijc.78748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Aglaia species, which contains triterpenoids, is the most numerous in the Meliaceae family. The A. cucullata species, of which there are only a few known examples, has received scant research attention. This investigation aims to identify triterpenoids in an n-hexane preparation of A. cucullata stem bark and evaluate their effects against the A549 lung cancer cell line. Five dammarane-type triterpenoids were isolated from the A. cucullata trunk bark, which is (1) (20S)-20-hydroxydammar-24-en-3-one, (2) cabraleone, (3) cabralealactone, (4) eichlerianic acid, and (5) (+)-fouquierol. Their chemical structures were determined using infrared, high-resolution mass spectrometry, and nuclear magnetic resonance, as well as through data comparison of the reported compounds. Compound 1 was priorly separated from the Aglaia genus, compounds 2–4 were first isolated from the A. cucullata species, and compound 5 has been reportedly isolated from the Meliaceae family and the Aglaia genus. All substances were tested for their lethal potential against the A549 lung cancer cell type. A seco structure in the A ring of dammarane-type triterpenoid might play an important part in the lethal activity of component 4, which showed the greatest activity with an IC50 value of 32.17 µM against the A549 lung cancer cell line.\",\"PeriodicalId\":13515,\"journal\":{\"name\":\"Indonesian Journal of Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijc.78748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijc.78748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

含有三萜的Aglaia是Meliaceae家族中数量最多的一种。a . cucullata物种,其中只有少数已知的例子,已经得到了很少的研究关注。本研究旨在鉴定瓜皮正己烷制剂中的三萜类化合物,并评价其对肺癌细胞系A549的抑制作用。从杜鹃树干树皮中分离得到5个达马烷型三萜,分别为(1)(20S)-20-羟基达马烷-24-烯-3-酮,(2)参马烷酮,(3)参马烷内酯,(4)烯马烷酸,(5)(+)-富喹醇。它们的化学结构是通过红外、高分辨率质谱、核磁共振以及对所报道化合物的数据比较来确定的。化合物1为早前从阿格拉属中分离得到,化合物2 ~ 4为首次从A. cucullata种中分离得到,化合物5据报道从Meliaceae科和阿格拉属中分离得到。测试了所有物质对A549型肺癌细胞的致死潜力。达玛烷型三萜A环的二级结构可能对组分4的致死活性起重要作用,其对A549肺癌细胞株的IC50值为32.17µM,活性最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Triterpenoids from the Stem Bark of Aglaia cucullata (Meliaceae) and Their Cytotoxic Activity against A549 Lung Cancer Cell Line
The Aglaia species, which contains triterpenoids, is the most numerous in the Meliaceae family. The A. cucullata species, of which there are only a few known examples, has received scant research attention. This investigation aims to identify triterpenoids in an n-hexane preparation of A. cucullata stem bark and evaluate their effects against the A549 lung cancer cell line. Five dammarane-type triterpenoids were isolated from the A. cucullata trunk bark, which is (1) (20S)-20-hydroxydammar-24-en-3-one, (2) cabraleone, (3) cabralealactone, (4) eichlerianic acid, and (5) (+)-fouquierol. Their chemical structures were determined using infrared, high-resolution mass spectrometry, and nuclear magnetic resonance, as well as through data comparison of the reported compounds. Compound 1 was priorly separated from the Aglaia genus, compounds 2–4 were first isolated from the A. cucullata species, and compound 5 has been reportedly isolated from the Meliaceae family and the Aglaia genus. All substances were tested for their lethal potential against the A549 lung cancer cell type. A seco structure in the A ring of dammarane-type triterpenoid might play an important part in the lethal activity of component 4, which showed the greatest activity with an IC50 value of 32.17 µM against the A549 lung cancer cell line.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indonesian Journal of Chemistry
Indonesian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
11.10%
发文量
106
审稿时长
15 weeks
期刊介绍: Indonesian Journal of Chemistry is a peer-reviewed, open access journal that publishes original research articles, review articles, as well as short communication in all areas of chemistry, including educational chemistry, applied chemistry, and chemical engineering.
期刊最新文献
Black Tea Waste as Corrosion Inhibitor for Carbon Steel in 0.5 M HCl Medium Synthesis, Thermal, DFT Calculations, HOMO-LUMO, MEP, and Molecular Docking Analysis of New Derivatives of Imidazolin-4-Ones Involvement of Fenton Reaction on Biodecolorization and Biodegradation of Methylene Blue Dye by Brown Rot Fungi Daedalea dickinsii Integration of Copperas and Moringa oleifera Seeds as Hybrid Coagulant for Turbidity and Ammonia Removal from Aquaculture Wastewater Synthesis and Characterization of Oligomer Bis(trans-2,3-dibromo-4-hydroxy-2-butenyl)terephthalate as a Green Corrosion Inhibitor on Mild Steel in 1 M H3PO4 Solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1