Zhenjie Zheng , Zhengli Wang , Xiqun Chen , Wei Ma , Bin Ran
{"title":"交通事故影响区域的时空聚类:一种保证一致性的改进模糊C均值方法","authors":"Zhenjie Zheng , Zhengli Wang , Xiqun Chen , Wei Ma , Bin Ran","doi":"10.1080/23249935.2023.2236719","DOIUrl":null,"url":null,"abstract":"<div><div>Traffic incidents disrupt the normal flow of vehicles and induce nonrecurrent traffic congestion. It has been well accepted that the shape of the spatiotemporal region impacted by a traffic incident should be consistent with the propagation of shockwaves. Although there has been a variety of approaches that attempt to estimate the impact region of traffic incidents, most of them are not capable of producing results with guaranteed consistency. In this research, we propose an improved fuzzy clustering approach that integrates the domain knowledge of shockwave theory for freeway incidents to address this issue, which is new to the literature. Compared to the general clustering approaches, our improved fuzzy clustering approach takes control of the clustering process by leveraging the directional propagation of shockwaves in the form of constraints, which can guarantee the consistency. In addition, unlike existing studies that employ discrete variables to distinguish traffic status in case of traffic incidents, the fuzzy clustering approach uses the continuous variable to indicate the incident impact on vehicle speed. This can help to reduce the information loss and estimate the impact region more accurately. Numerical experiments are conducted to evaluate the performance of our approach using both simulation and real data. Results show that our approach is able to guarantee that the shape of the impact region is consistent with the propagation of shockwaves and achieve higher accuracy of the estimated delay induced by the incident than the current state-of-the-art approach.</div></div>","PeriodicalId":48871,"journal":{"name":"Transportmetrica A-Transport Science","volume":"21 1","pages":"Pages 358-387"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal clustering for the impact region caused by a traffic incident: an improved fuzzy C-means approach with guaranteed consistency\",\"authors\":\"Zhenjie Zheng , Zhengli Wang , Xiqun Chen , Wei Ma , Bin Ran\",\"doi\":\"10.1080/23249935.2023.2236719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traffic incidents disrupt the normal flow of vehicles and induce nonrecurrent traffic congestion. It has been well accepted that the shape of the spatiotemporal region impacted by a traffic incident should be consistent with the propagation of shockwaves. Although there has been a variety of approaches that attempt to estimate the impact region of traffic incidents, most of them are not capable of producing results with guaranteed consistency. In this research, we propose an improved fuzzy clustering approach that integrates the domain knowledge of shockwave theory for freeway incidents to address this issue, which is new to the literature. Compared to the general clustering approaches, our improved fuzzy clustering approach takes control of the clustering process by leveraging the directional propagation of shockwaves in the form of constraints, which can guarantee the consistency. In addition, unlike existing studies that employ discrete variables to distinguish traffic status in case of traffic incidents, the fuzzy clustering approach uses the continuous variable to indicate the incident impact on vehicle speed. This can help to reduce the information loss and estimate the impact region more accurately. Numerical experiments are conducted to evaluate the performance of our approach using both simulation and real data. Results show that our approach is able to guarantee that the shape of the impact region is consistent with the propagation of shockwaves and achieve higher accuracy of the estimated delay induced by the incident than the current state-of-the-art approach.</div></div>\",\"PeriodicalId\":48871,\"journal\":{\"name\":\"Transportmetrica A-Transport Science\",\"volume\":\"21 1\",\"pages\":\"Pages 358-387\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica A-Transport Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S2324993523001847\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica A-Transport Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2324993523001847","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Spatiotemporal clustering for the impact region caused by a traffic incident: an improved fuzzy C-means approach with guaranteed consistency
Traffic incidents disrupt the normal flow of vehicles and induce nonrecurrent traffic congestion. It has been well accepted that the shape of the spatiotemporal region impacted by a traffic incident should be consistent with the propagation of shockwaves. Although there has been a variety of approaches that attempt to estimate the impact region of traffic incidents, most of them are not capable of producing results with guaranteed consistency. In this research, we propose an improved fuzzy clustering approach that integrates the domain knowledge of shockwave theory for freeway incidents to address this issue, which is new to the literature. Compared to the general clustering approaches, our improved fuzzy clustering approach takes control of the clustering process by leveraging the directional propagation of shockwaves in the form of constraints, which can guarantee the consistency. In addition, unlike existing studies that employ discrete variables to distinguish traffic status in case of traffic incidents, the fuzzy clustering approach uses the continuous variable to indicate the incident impact on vehicle speed. This can help to reduce the information loss and estimate the impact region more accurately. Numerical experiments are conducted to evaluate the performance of our approach using both simulation and real data. Results show that our approach is able to guarantee that the shape of the impact region is consistent with the propagation of shockwaves and achieve higher accuracy of the estimated delay induced by the incident than the current state-of-the-art approach.
期刊介绍:
Transportmetrica A provides a forum for original discourse in transport science. The international journal''s focus is on the scientific approach to transport research methodology and empirical analysis of moving people and goods. Papers related to all aspects of transportation are welcome. A rigorous peer review that involves editor screening and anonymous refereeing for submitted articles facilitates quality output.