压缩感知在瞬态光度事件中存在噪声的应用

Signals Pub Date : 2022-11-02 DOI:10.3390/signals3040047
Asmita Korde-Patel, R. Barry, T. Mohsenin
{"title":"压缩感知在瞬态光度事件中存在噪声的应用","authors":"Asmita Korde-Patel, R. Barry, T. Mohsenin","doi":"10.3390/signals3040047","DOIUrl":null,"url":null,"abstract":"Compressive sensing is a simultaneous data acquisition and compression technique, which can significantly reduce data bandwidth, data storage volume, and power. We apply this technique for transient photometric events. In this work, we analyze the effect of noise on the detection of these events using compressive sensing (CS). We show numerical results on the impact of source and measurement noise on the reconstruction of transient photometric curves, generated due to gravitational microlensing events. In our work, we define source noise as background noise, or any inherent noise present in the sampling region of interest. For our models, measurement noise is defined as the noise present during data acquisition. These results can be generalized for any transient photometric CS measurements with source noise and CS data acquisition measurement noise. Our results show that the CS measurement matrix properties have an effect on CS reconstruction in the presence of source noise and measurement noise. We provide potential solutions for improving the performance by tuning some of the properties of the measurement matrices. For source noise applications, we show that choosing a measurement matrix with low mutual coherence can lower the amount of error caused due to CS reconstruction. Similarly, for measurement noise addition, we show that by choosing a lower expected value of the binomial measurement matrix, we can lower the amount of error due to CS reconstruction.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Compressive Sensing in the Presence of Noise for Transient Photometric Events\",\"authors\":\"Asmita Korde-Patel, R. Barry, T. Mohsenin\",\"doi\":\"10.3390/signals3040047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive sensing is a simultaneous data acquisition and compression technique, which can significantly reduce data bandwidth, data storage volume, and power. We apply this technique for transient photometric events. In this work, we analyze the effect of noise on the detection of these events using compressive sensing (CS). We show numerical results on the impact of source and measurement noise on the reconstruction of transient photometric curves, generated due to gravitational microlensing events. In our work, we define source noise as background noise, or any inherent noise present in the sampling region of interest. For our models, measurement noise is defined as the noise present during data acquisition. These results can be generalized for any transient photometric CS measurements with source noise and CS data acquisition measurement noise. Our results show that the CS measurement matrix properties have an effect on CS reconstruction in the presence of source noise and measurement noise. We provide potential solutions for improving the performance by tuning some of the properties of the measurement matrices. For source noise applications, we show that choosing a measurement matrix with low mutual coherence can lower the amount of error caused due to CS reconstruction. Similarly, for measurement noise addition, we show that by choosing a lower expected value of the binomial measurement matrix, we can lower the amount of error due to CS reconstruction.\",\"PeriodicalId\":93815,\"journal\":{\"name\":\"Signals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/signals3040047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals3040047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

压缩感知是一种同时进行数据采集和压缩的技术,可以显著降低数据带宽、数据存储量和功耗。我们将这种技术应用于瞬态光度事件。在这项工作中,我们分析了噪声对使用压缩感知(CS)检测这些事件的影响。我们给出了源噪声和测量噪声对由引力微透镜事件产生的瞬态光度曲线重建影响的数值结果。在我们的工作中,我们将源噪声定义为背景噪声,或存在于感兴趣的采样区域的任何固有噪声。对于我们的模型,测量噪声被定义为数据采集过程中存在的噪声。这些结果可以推广到任何具有源噪声和CS数据采集测量噪声的瞬态光度CS测量。研究结果表明,在存在源噪声和测量噪声的情况下,CS测量矩阵的性质对CS重构有影响。我们提供了通过调整测量矩阵的一些属性来提高性能的潜在解决方案。对于源噪声应用,我们表明选择低互相干性的测量矩阵可以降低由于CS重构引起的误差量。同样,对于测量噪声的添加,我们表明,通过选择一个较低的二项式测量矩阵的期望值,我们可以降低由于CS重构而产生的误差量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Compressive Sensing in the Presence of Noise for Transient Photometric Events
Compressive sensing is a simultaneous data acquisition and compression technique, which can significantly reduce data bandwidth, data storage volume, and power. We apply this technique for transient photometric events. In this work, we analyze the effect of noise on the detection of these events using compressive sensing (CS). We show numerical results on the impact of source and measurement noise on the reconstruction of transient photometric curves, generated due to gravitational microlensing events. In our work, we define source noise as background noise, or any inherent noise present in the sampling region of interest. For our models, measurement noise is defined as the noise present during data acquisition. These results can be generalized for any transient photometric CS measurements with source noise and CS data acquisition measurement noise. Our results show that the CS measurement matrix properties have an effect on CS reconstruction in the presence of source noise and measurement noise. We provide potential solutions for improving the performance by tuning some of the properties of the measurement matrices. For source noise applications, we show that choosing a measurement matrix with low mutual coherence can lower the amount of error caused due to CS reconstruction. Similarly, for measurement noise addition, we show that by choosing a lower expected value of the binomial measurement matrix, we can lower the amount of error due to CS reconstruction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Detection of Movement and Lead-Popping Artifacts in Polysomnography EEG Data. Development of an Integrated System of sEMG Signal Acquisition, Processing, and Analysis with AI Techniques Correction: Martin et al. ApeTI: A Thermal Image Dataset for Face and Nose Segmentation with Apes. Signals 2024, 5, 147–164 On the Impulse Response of Singular Discrete LTI Systems and Three Fourier Transform Pairs Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1