基于信噪比的故障检测与识别

A. Rojas, Hugo O. Garcés
{"title":"基于信噪比的故障检测与识别","authors":"A. Rojas, Hugo O. Garcés","doi":"10.3389/fcteg.2022.806558","DOIUrl":null,"url":null,"abstract":"In this work, we introduce signal-to-noise ratio (SNR) based fault detection and identification mechanisms for a networked control system feedback loop, where the network component is represented by an additive white noise (AWN) channel. The SNR approach is known to be a steady-state analysis and design tool, thus we first introduce a finite time approximation for the estimated AWN channel SNR. We then consider the case of a general linear time-invariant plant model with one unstable pole. The potential faults that we discuss here cover simultaneously the plant model gain and/or the unstable pole. The fault detection is performed relative to the estimated AWN channel SNR. The fault identification is performed using recursive least squares ideas and then further validated with the observed SNR value, when a fault has been previously detected. We show that the proposed SNR-based fault mechanism (fault detection plus fault identification) is capable of processing the proposed faults. We conclude discussing future research based on the contributions exposed in the present work.","PeriodicalId":73076,"journal":{"name":"Frontiers in control engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Signal-to-Noise Ratio Based Fault Detection and Identification\",\"authors\":\"A. Rojas, Hugo O. Garcés\",\"doi\":\"10.3389/fcteg.2022.806558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce signal-to-noise ratio (SNR) based fault detection and identification mechanisms for a networked control system feedback loop, where the network component is represented by an additive white noise (AWN) channel. The SNR approach is known to be a steady-state analysis and design tool, thus we first introduce a finite time approximation for the estimated AWN channel SNR. We then consider the case of a general linear time-invariant plant model with one unstable pole. The potential faults that we discuss here cover simultaneously the plant model gain and/or the unstable pole. The fault detection is performed relative to the estimated AWN channel SNR. The fault identification is performed using recursive least squares ideas and then further validated with the observed SNR value, when a fault has been previously detected. We show that the proposed SNR-based fault mechanism (fault detection plus fault identification) is capable of processing the proposed faults. We conclude discussing future research based on the contributions exposed in the present work.\",\"PeriodicalId\":73076,\"journal\":{\"name\":\"Frontiers in control engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in control engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcteg.2022.806558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in control engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcteg.2022.806558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们为网络控制系统反馈回路引入了基于信噪比(SNR)的故障检测和识别机制,其中网络分量由加性白噪声(AWN)信道表示。众所周知,信噪比方法是一种稳态分析和设计工具,因此我们首先引入了估计AWN信道信噪比的有限时间近似。然后,我们考虑具有一个不稳定极点的一般线性时不变对象模型的情况。我们在这里讨论的潜在故障同时包括工厂模型增益和/或不稳定极点。相对于估计的AWN信道SNR来执行故障检测。使用递归最小二乘思想进行故障识别,然后在先前检测到故障时,使用观测到的SNR值进行进一步验证。我们证明了所提出的基于SNR的故障机制(故障检测加故障识别)能够处理所提出的故障。最后,我们根据目前工作中的贡献讨论了未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Signal-to-Noise Ratio Based Fault Detection and Identification
In this work, we introduce signal-to-noise ratio (SNR) based fault detection and identification mechanisms for a networked control system feedback loop, where the network component is represented by an additive white noise (AWN) channel. The SNR approach is known to be a steady-state analysis and design tool, thus we first introduce a finite time approximation for the estimated AWN channel SNR. We then consider the case of a general linear time-invariant plant model with one unstable pole. The potential faults that we discuss here cover simultaneously the plant model gain and/or the unstable pole. The fault detection is performed relative to the estimated AWN channel SNR. The fault identification is performed using recursive least squares ideas and then further validated with the observed SNR value, when a fault has been previously detected. We show that the proposed SNR-based fault mechanism (fault detection plus fault identification) is capable of processing the proposed faults. We conclude discussing future research based on the contributions exposed in the present work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reinforcement learning for path planning of free-floating space robotic manipulator with collision avoidance and observation noise Self-paced heart rate control during treadmill exercise for persons with gait impairment: a case study Editorial: Cooperative control and team behaviors in adversarial environments Erratum: Global versus local Lyapunov approach used in disturbance observer-based wind turbine control Teaming behavior in adversarial scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1