{"title":"多部分二能级原子系统中的全局量子不和谐和von Neumann熵","authors":"M. Ibrahim, M. Usman, Khalid Khan","doi":"10.1142/S0219749923500065","DOIUrl":null,"url":null,"abstract":"We have computed the global quantum discord and von Neumann entropy of multipartite two-level atomic systems interacting with a single-mode Fock field. We use Tavis-Cumming model. We have explored how quantum correlations and quantum entanglement evolve with time in such systems. The quantum system is prepared initially in a mixed state and different parameters are varied to see how they affect the information processing in the system. The dynamical character of the global quantum discord and von Neumann entropy show an interplay between classical and non-classical correlations. Photons in this model play an important role to assist the global quantum discord and von Neumann entropy and we observed that the effects of the field on the global quantum discord and von Neumann entropy reside in the time evolution of the system indicating that both atom and field states have become entangled. The global quantum discord is assisted in a non-linear fashion with the number of photons in the system. The global quantum discord and von Neumann entropy show linear behavior with each other in the dynamics of the system. The effects of intrinsic decoherence on the dynamics of the global quantum discord and von Neumann entropy are also studied. We have extrapolated the results for a large photon number on the system. We have studied the effect of the change in the size of the system on the maximum value of global quantum discord and von Neumann entropy and we have estimated the scaling coefficients for this behavior.","PeriodicalId":51058,"journal":{"name":"International Journal of Quantum Information","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global quantum discord and von Neumann entropy in multipartite two-level atomic systems\",\"authors\":\"M. Ibrahim, M. Usman, Khalid Khan\",\"doi\":\"10.1142/S0219749923500065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have computed the global quantum discord and von Neumann entropy of multipartite two-level atomic systems interacting with a single-mode Fock field. We use Tavis-Cumming model. We have explored how quantum correlations and quantum entanglement evolve with time in such systems. The quantum system is prepared initially in a mixed state and different parameters are varied to see how they affect the information processing in the system. The dynamical character of the global quantum discord and von Neumann entropy show an interplay between classical and non-classical correlations. Photons in this model play an important role to assist the global quantum discord and von Neumann entropy and we observed that the effects of the field on the global quantum discord and von Neumann entropy reside in the time evolution of the system indicating that both atom and field states have become entangled. The global quantum discord is assisted in a non-linear fashion with the number of photons in the system. The global quantum discord and von Neumann entropy show linear behavior with each other in the dynamics of the system. The effects of intrinsic decoherence on the dynamics of the global quantum discord and von Neumann entropy are also studied. We have extrapolated the results for a large photon number on the system. We have studied the effect of the change in the size of the system on the maximum value of global quantum discord and von Neumann entropy and we have estimated the scaling coefficients for this behavior.\",\"PeriodicalId\":51058,\"journal\":{\"name\":\"International Journal of Quantum Information\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219749923500065\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0219749923500065","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Global quantum discord and von Neumann entropy in multipartite two-level atomic systems
We have computed the global quantum discord and von Neumann entropy of multipartite two-level atomic systems interacting with a single-mode Fock field. We use Tavis-Cumming model. We have explored how quantum correlations and quantum entanglement evolve with time in such systems. The quantum system is prepared initially in a mixed state and different parameters are varied to see how they affect the information processing in the system. The dynamical character of the global quantum discord and von Neumann entropy show an interplay between classical and non-classical correlations. Photons in this model play an important role to assist the global quantum discord and von Neumann entropy and we observed that the effects of the field on the global quantum discord and von Neumann entropy reside in the time evolution of the system indicating that both atom and field states have become entangled. The global quantum discord is assisted in a non-linear fashion with the number of photons in the system. The global quantum discord and von Neumann entropy show linear behavior with each other in the dynamics of the system. The effects of intrinsic decoherence on the dynamics of the global quantum discord and von Neumann entropy are also studied. We have extrapolated the results for a large photon number on the system. We have studied the effect of the change in the size of the system on the maximum value of global quantum discord and von Neumann entropy and we have estimated the scaling coefficients for this behavior.
期刊介绍:
The International Journal of Quantum Information (IJQI) provides a forum for the interdisciplinary field of Quantum Information Science. In particular, we welcome contributions in these areas of experimental and theoretical research:
Quantum Cryptography
Quantum Computation
Quantum Communication
Fundamentals of Quantum Mechanics
Authors are welcome to submit quality research and review papers as well as short correspondences in both theoretical and experimental areas. Submitted articles will be refereed prior to acceptance for publication in the Journal.