{"title":"-耦合机制足以得到应变梯度弹性的指数衰减","authors":"José R. Fernández, R. Quintanilla","doi":"10.1017/s0956792523000086","DOIUrl":null,"url":null,"abstract":"\n In this paper, we consider the time decay of the solutions to some problems arising in strain gradient thermoelasticity. We restrict to the two-dimensional case, and we assume that two dissipative mechanisms are introduced, the temperature and the mass dissipation. First, we show that this problem is well-posed proving that the operator defining it generates a contractive semigroup of linear operators. Then, assuming that the function involving the coupling terms is elliptic, the exponential decay of the solutions is concluded as well as the analyticity of the solutions. Finally, we describe how to obtain the exponential stability in the case of hyperbolic dissipation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"-coupling mechanisms are sufficient to obtain exponential decay in strain gradient elasticity\",\"authors\":\"José R. Fernández, R. Quintanilla\",\"doi\":\"10.1017/s0956792523000086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we consider the time decay of the solutions to some problems arising in strain gradient thermoelasticity. We restrict to the two-dimensional case, and we assume that two dissipative mechanisms are introduced, the temperature and the mass dissipation. First, we show that this problem is well-posed proving that the operator defining it generates a contractive semigroup of linear operators. Then, assuming that the function involving the coupling terms is elliptic, the exponential decay of the solutions is concluded as well as the analyticity of the solutions. Finally, we describe how to obtain the exponential stability in the case of hyperbolic dissipation.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0956792523000086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792523000086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
-coupling mechanisms are sufficient to obtain exponential decay in strain gradient elasticity
In this paper, we consider the time decay of the solutions to some problems arising in strain gradient thermoelasticity. We restrict to the two-dimensional case, and we assume that two dissipative mechanisms are introduced, the temperature and the mass dissipation. First, we show that this problem is well-posed proving that the operator defining it generates a contractive semigroup of linear operators. Then, assuming that the function involving the coupling terms is elliptic, the exponential decay of the solutions is concluded as well as the analyticity of the solutions. Finally, we describe how to obtain the exponential stability in the case of hyperbolic dissipation.