词形语言特征的自动学习及词形分析

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2022-11-01 DOI:10.2478/cait-2022-0042
L. Kovács, G. Szabó
{"title":"词形语言特征的自动学习及词形分析","authors":"L. Kovács, G. Szabó","doi":"10.2478/cait-2022-0042","DOIUrl":null,"url":null,"abstract":"Abstract The automated induction of inflection rules is an important research area for computational linguistics. In this paper, we present a novel morphological rule induction model called B-Morpher that can be used for both inflection analysis and morphological analysis. The core element of the engine is a modified Bayes classifier in which class categories correspond to general string transformation rules. Beside the core classification module, the engine contains a neural network module and verification unit to improve classification accuracy. For the evaluation, beside the large Hungarian dataset the tests include smaller non-Hungarian datasets from the SIGMORPHON shared task pools. Our evaluation shows that the efficiency of B-Morpher is comparable with the best results, and it outperforms the state-of-theart base models for some languages. The proposed system can be characterized by not only high accuracy, but also short training time and small knowledge base size.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"B-Morpher: Automated Learning of Morphological Language Characteristics for Inflection and Morphological Analysis\",\"authors\":\"L. Kovács, G. Szabó\",\"doi\":\"10.2478/cait-2022-0042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The automated induction of inflection rules is an important research area for computational linguistics. In this paper, we present a novel morphological rule induction model called B-Morpher that can be used for both inflection analysis and morphological analysis. The core element of the engine is a modified Bayes classifier in which class categories correspond to general string transformation rules. Beside the core classification module, the engine contains a neural network module and verification unit to improve classification accuracy. For the evaluation, beside the large Hungarian dataset the tests include smaller non-Hungarian datasets from the SIGMORPHON shared task pools. Our evaluation shows that the efficiency of B-Morpher is comparable with the best results, and it outperforms the state-of-theart base models for some languages. The proposed system can be characterized by not only high accuracy, but also short training time and small knowledge base size.\",\"PeriodicalId\":45562,\"journal\":{\"name\":\"Cybernetics and Information Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cait-2022-0042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2022-0042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

屈折规则的自动归纳是计算语言学的一个重要研究领域。本文提出了一种新的词形规则归纳模型B-Morpher,该模型可以同时用于词形分析和词形分析。引擎的核心元素是一个改进的贝叶斯分类器,其中类类别对应于一般的字符串转换规则。除了核心分类模块外,该引擎还包含神经网络模块和验证单元,以提高分类精度。对于评估,除了大型匈牙利数据集之外,测试还包括来自SIGMORPHON共享任务池的较小的非匈牙利数据集。我们的评估表明,B-Morpher的效率与最佳结果相当,并且在某些语言中优于最先进的基础模型。该系统不仅准确率高,而且训练时间短,知识库规模小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
B-Morpher: Automated Learning of Morphological Language Characteristics for Inflection and Morphological Analysis
Abstract The automated induction of inflection rules is an important research area for computational linguistics. In this paper, we present a novel morphological rule induction model called B-Morpher that can be used for both inflection analysis and morphological analysis. The core element of the engine is a modified Bayes classifier in which class categories correspond to general string transformation rules. Beside the core classification module, the engine contains a neural network module and verification unit to improve classification accuracy. For the evaluation, beside the large Hungarian dataset the tests include smaller non-Hungarian datasets from the SIGMORPHON shared task pools. Our evaluation shows that the efficiency of B-Morpher is comparable with the best results, and it outperforms the state-of-theart base models for some languages. The proposed system can be characterized by not only high accuracy, but also short training time and small knowledge base size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1